MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprid Structured version   Unicode version

Theorem grprid 14837
Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
grpbn0.b  |-  B  =  ( Base `  G
)
grplid.p  |-  .+  =  ( +g  `  G )
grplid.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grprid  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  .0.  )  =  X )

Proof of Theorem grprid
StepHypRef Expression
1 grpmnd 14818 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpbn0.b . . 3  |-  B  =  ( Base `  G
)
3 grplid.p . . 3  |-  .+  =  ( +g  `  G )
4 grplid.o . . 3  |-  .0.  =  ( 0g `  G )
52, 3, 4mndrid 14718 . 2  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( X  .+  .0.  )  =  X )
61, 5sylan 459 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  .0.  )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   ` cfv 5455  (class class class)co 6082   Basecbs 13470   +g cplusg 13530   0gc0g 13724   Mndcmnd 14685   Grpcgrp 14686
This theorem is referenced by:  grprcan  14839  grpinvid1  14854  grpinvid2  14855  grpsubid1  14875  grpsubadd  14877  grppncan  14880  mulgdirlem  14915  nmzsubg  14982  0nsg  14986  cayleylem2  15112  cntzsubg  15136  odbezout  15195  lsmdisj2  15315  pj1lid  15334  frgpuplem  15405  abladdsub4  15439  odadd2  15465  gex2abl  15467  rnglz  15701  isabvd  15909  lmod0vrid  15982  islmhm2  16115  mplcoe1  16529  lsmcss  16920  opnsubg  18138  tgpconcompeqg  18142  snclseqg  18146  deg1add  20027  lflmul  29867  cdlemn4  31997  mapdh6cN  32537  hdmap1l6c  32612  hdmapinvlem3  32722  hdmapinvlem4  32723  hdmapglem7b  32730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-iota 5419  df-fun 5457  df-fv 5463  df-ov 6085  df-riota 6550  df-0g 13728  df-mnd 14691  df-grp 14813
  Copyright terms: Public domain W3C validator