MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprid Unicode version

Theorem grprid 14529
Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
grpbn0.b  |-  B  =  ( Base `  G
)
grplid.p  |-  .+  =  ( +g  `  G )
grplid.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grprid  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  .0.  )  =  X )

Proof of Theorem grprid
StepHypRef Expression
1 grpmnd 14510 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpbn0.b . . 3  |-  B  =  ( Base `  G
)
3 grplid.p . . 3  |-  .+  =  ( +g  `  G )
4 grplid.o . . 3  |-  .0.  =  ( 0g `  G )
52, 3, 4mndrid 14410 . 2  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( X  .+  .0.  )  =  X )
61, 5sylan 457 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  .0.  )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416   Mndcmnd 14377   Grpcgrp 14378
This theorem is referenced by:  grprcan  14531  grpinvid1  14546  grpinvid2  14547  grpsubid1  14567  grpsubadd  14569  grppncan  14572  mulgdirlem  14607  nmzsubg  14674  0nsg  14678  cayleylem2  14804  cntzsubg  14828  odbezout  14887  lsmdisj2  15007  pj1lid  15026  frgpuplem  15097  abladdsub4  15131  odadd2  15157  gex2abl  15159  rnglz  15393  isabvd  15601  lmod0vrid  15677  islmhm2  15811  mplcoe1  16225  lsmcss  16608  opnsubg  17806  tgpconcompeqg  17810  snclseqg  17814  deg1add  19505  lflmul  29880  cdlemn4  32010  mapdh6cN  32550  hdmap1l6c  32625  hdmapinvlem3  32735  hdmapinvlem4  32736  hdmapglem7b  32743
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-riota 6320  df-0g 13420  df-mnd 14383  df-grp 14505
  Copyright terms: Public domain W3C validator