MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinv Unicode version

Theorem grprinv 14545
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( inv g `  G )
Assertion
Ref Expression
grprinv  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )

Proof of Theorem grprinv
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . 3  |-  B  =  ( Base `  G
)
2 grpinv.p . . 3  |-  .+  =  ( +g  `  G )
31, 2grpcl 14511 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
4 grpinv.u . . 3  |-  .0.  =  ( 0g `  G )
51, 4grpidcl 14526 . 2  |-  ( G  e.  Grp  ->  .0.  e.  B )
61, 2, 4grplid 14528 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  (  .0.  .+  x
)  =  x )
71, 2grpass 14512 . 2  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
81, 2, 4grpinvex 14513 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x
)  =  .0.  )
9 simpr 447 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  X  e.  B )
10 grpinv.n . . 3  |-  N  =  ( inv g `  G )
111, 10grpinvcl 14543 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
121, 2, 4, 10grplinv 14544 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
133, 5, 6, 7, 8, 9, 11, 12grprinvd 6075 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416   Grpcgrp 14378   inv gcminusg 14379
This theorem is referenced by:  grpinvid1  14546  grpinvid2  14547  grpinvinv  14551  grplmulf1o  14558  grpinvadd  14560  grpsubid  14566  mulgdirlem  14607  subginv  14644  nmzsubg  14674  eqger  14683  divsinv  14692  ghminv  14706  conjnmz  14732  gacan  14775  cntzsubg  14828  oppggrp  14846  oppginv  14848  sylow2blem3  14949  frgpuplem  15097  rngnegl  15396  unitrinv  15476  isdrng2  15538  lmodvnegid  15682  lmodvsinv2  15810  lspsolvlem  15911  ghmcnp  17813  divstgpopn  17818  isngp4  18149  psgnuni  27525  grpvrinv  27554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-riota 6320  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506
  Copyright terms: Public domain W3C validator