MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubinv Structured version   Unicode version

Theorem grpsubinv 14856
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
grpsubinv.b  |-  B  =  ( Base `  G
)
grpsubinv.p  |-  .+  =  ( +g  `  G )
grpsubinv.m  |-  .-  =  ( -g `  G )
grpsubinv.n  |-  N  =  ( inv g `  G )
grpsubinv.g  |-  ( ph  ->  G  e.  Grp )
grpsubinv.x  |-  ( ph  ->  X  e.  B )
grpsubinv.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
grpsubinv  |-  ( ph  ->  ( X  .-  ( N `  Y )
)  =  ( X 
.+  Y ) )

Proof of Theorem grpsubinv
StepHypRef Expression
1 grpsubinv.x . . 3  |-  ( ph  ->  X  e.  B )
2 grpsubinv.g . . . 4  |-  ( ph  ->  G  e.  Grp )
3 grpsubinv.y . . . 4  |-  ( ph  ->  Y  e.  B )
4 grpsubinv.b . . . . 5  |-  B  =  ( Base `  G
)
5 grpsubinv.n . . . . 5  |-  N  =  ( inv g `  G )
64, 5grpinvcl 14842 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
72, 3, 6syl2anc 643 . . 3  |-  ( ph  ->  ( N `  Y
)  e.  B )
8 grpsubinv.p . . . 4  |-  .+  =  ( +g  `  G )
9 grpsubinv.m . . . 4  |-  .-  =  ( -g `  G )
104, 8, 5, 9grpsubval 14840 . . 3  |-  ( ( X  e.  B  /\  ( N `  Y )  e.  B )  -> 
( X  .-  ( N `  Y )
)  =  ( X 
.+  ( N `  ( N `  Y ) ) ) )
111, 7, 10syl2anc 643 . 2  |-  ( ph  ->  ( X  .-  ( N `  Y )
)  =  ( X 
.+  ( N `  ( N `  Y ) ) ) )
124, 5grpinvinv 14850 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
132, 3, 12syl2anc 643 . . 3  |-  ( ph  ->  ( N `  ( N `  Y )
)  =  Y )
1413oveq2d 6089 . 2  |-  ( ph  ->  ( X  .+  ( N `  ( N `  Y ) ) )  =  ( X  .+  Y ) )
1511, 14eqtrd 2467 1  |-  ( ph  ->  ( X  .-  ( N `  Y )
)  =  ( X 
.+  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   Grpcgrp 14677   inv gcminusg 14678   -gcsg 14680
This theorem is referenced by:  issubg4  14953  isnsg3  14966  lsmelvalm  15277  ablsub2inv  15427  ablsubsub4  15435  istgp2  18113  nmtri  18664  baerlem5amN  32451  baerlem5abmN  32453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-sbg 14806
  Copyright terms: Public domain W3C validator