Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubpropd2 Structured version   Unicode version

Theorem grpsubpropd2 14895
 Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubpropd2.1
grpsubpropd2.2
grpsubpropd2.3
grpsubpropd2.4
Assertion
Ref Expression
grpsubpropd2
Distinct variable groups:   ,,   ,,   ,,   ,,

Proof of Theorem grpsubpropd2
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 958 . . . . . 6
2 simp2 959 . . . . . . 7
3 grpsubpropd2.1 . . . . . . . 8
433ad2ant1 979 . . . . . . 7
52, 4eleqtrrd 2515 . . . . . 6
6 grpsubpropd2.3 . . . . . . . . 9
763ad2ant1 979 . . . . . . . 8
8 simp3 960 . . . . . . . 8
9 eqid 2438 . . . . . . . . 9
10 eqid 2438 . . . . . . . . 9
119, 10grpinvcl 14855 . . . . . . . 8
127, 8, 11syl2anc 644 . . . . . . 7
1312, 4eleqtrrd 2515 . . . . . 6
14 grpsubpropd2.4 . . . . . . 7
1514proplem 13920 . . . . . 6
161, 5, 13, 15syl12anc 1183 . . . . 5
17 grpsubpropd2.2 . . . . . . . . 9
183, 17, 14grpinvpropd 14871 . . . . . . . 8
1918fveq1d 5733 . . . . . . 7
2019oveq2d 6100 . . . . . 6
21203ad2ant1 979 . . . . 5
2216, 21eqtrd 2470 . . . 4
2322mpt2eq3dva 6141 . . 3
243, 17eqtr3d 2472 . . . 4
25 mpt2eq12 6137 . . . 4
2624, 24, 25syl2anc 644 . . 3
2723, 26eqtrd 2470 . 2
28 eqid 2438 . . 3
29 eqid 2438 . . 3
309, 28, 10, 29grpsubfval 14852 . 2
31 eqid 2438 . . 3
32 eqid 2438 . . 3
33 eqid 2438 . . 3
34 eqid 2438 . . 3
3531, 32, 33, 34grpsubfval 14852 . 2
3627, 30, 353eqtr4g 2495 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   w3a 937   wceq 1653   wcel 1726  cfv 5457  (class class class)co 6084   cmpt2 6086  cbs 13474   cplusg 13534  cgrp 14690  cminusg 14691  csg 14693 This theorem is referenced by:  ngppropd  18683 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-sbg 14819
 Copyright terms: Public domain W3C validator