MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grudomon Structured version   Unicode version

Theorem grudomon 8693
Description: Each ordinal that is comparable with an element of the universe is in the universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
grudomon  |-  ( ( U  e.  Univ  /\  A  e.  On  /\  ( B  e.  U  /\  A  ~<_  B ) )  ->  A  e.  U )

Proof of Theorem grudomon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4216 . . . . . . . 8  |-  ( x  =  y  ->  (
x  ~<_  B  <->  y  ~<_  B ) )
2 eleq1 2497 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  U  <->  y  e.  U ) )
31, 2imbi12d 313 . . . . . . 7  |-  ( x  =  y  ->  (
( x  ~<_  B  ->  x  e.  U )  <->  ( y  ~<_  B  ->  y  e.  U ) ) )
43imbi2d 309 . . . . . 6  |-  ( x  =  y  ->  (
( ( U  e. 
Univ  /\  B  e.  U
)  ->  ( x  ~<_  B  ->  x  e.  U
) )  <->  ( ( U  e.  Univ  /\  B  e.  U )  ->  (
y  ~<_  B  ->  y  e.  U ) ) ) )
5 breq1 4216 . . . . . . . 8  |-  ( x  =  A  ->  (
x  ~<_  B  <->  A  ~<_  B ) )
6 eleq1 2497 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  U  <->  A  e.  U ) )
75, 6imbi12d 313 . . . . . . 7  |-  ( x  =  A  ->  (
( x  ~<_  B  ->  x  e.  U )  <->  ( A  ~<_  B  ->  A  e.  U ) ) )
87imbi2d 309 . . . . . 6  |-  ( x  =  A  ->  (
( ( U  e. 
Univ  /\  B  e.  U
)  ->  ( x  ~<_  B  ->  x  e.  U
) )  <->  ( ( U  e.  Univ  /\  B  e.  U )  ->  ( A  ~<_  B  ->  A  e.  U ) ) ) )
9 r19.21v 2794 . . . . . . 7  |-  ( A. y  e.  x  (
( U  e.  Univ  /\  B  e.  U )  ->  ( y  ~<_  B  ->  y  e.  U
) )  <->  ( ( U  e.  Univ  /\  B  e.  U )  ->  A. y  e.  x  ( y  ~<_  B  ->  y  e.  U
) ) )
10 simpl1 961 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  x  e.  On )
11 vex 2960 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
12 onelss 4624 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  C_  x )
)
1312imp 420 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  C_  x )
14 ssdomg 7154 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  (
y  C_  x  ->  y  ~<_  x ) )
1511, 13, 14mpsyl 62 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  ~<_  x )
1610, 15sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  y  ~<_  x )
17 simplr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  x  ~<_  B )
18 domtr 7161 . . . . . . . . . . . . . . 15  |-  ( ( y  ~<_  x  /\  x  ~<_  B )  ->  y  ~<_  B )
1916, 17, 18syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  y  ~<_  B )
20 pm2.27 38 . . . . . . . . . . . . . 14  |-  ( y  ~<_  B  ->  ( (
y  ~<_  B  ->  y  e.  U )  ->  y  e.  U ) )
2119, 20syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  ( (
y  ~<_  B  ->  y  e.  U )  ->  y  e.  U ) )
2221ralimdva 2785 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  A. y  e.  x  y  e.  U )
)
23 dfss3 3339 . . . . . . . . . . . . 13  |-  ( x 
C_  U  <->  A. y  e.  x  y  e.  U )
24 domeng 7123 . . . . . . . . . . . . . . . 16  |-  ( B  e.  U  ->  (
x  ~<_  B  <->  E. y
( x  ~~  y  /\  y  C_  B ) ) )
25243ad2ant3 981 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  (
x  ~<_  B  <->  E. y
( x  ~~  y  /\  y  C_  B ) ) )
2625biimpa 472 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  E. y
( x  ~~  y  /\  y  C_  B ) )
27 simpl2 962 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  U  e.  Univ )
28 gruss 8672 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  y  C_  B )  ->  y  e.  U )
29283expia 1156 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  (
y  C_  B  ->  y  e.  U ) )
30293adant1 976 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  (
y  C_  B  ->  y  e.  U ) )
3130adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
y  C_  B  ->  y  e.  U ) )
32 ensym 7157 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
~~  y  ->  y  ~~  x )
3332a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
x  ~~  y  ->  y 
~~  x ) )
3431, 33anim12d 548 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
( y  C_  B  /\  x  ~~  y )  ->  ( y  e.  U  /\  y  ~~  x ) ) )
3534ancomsd 442 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
( x  ~~  y  /\  y  C_  B )  ->  ( y  e.  U  /\  y  ~~  x ) ) )
3635eximdv 1633 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( E. y ( x  ~~  y  /\  y  C_  B
)  ->  E. y
( y  e.  U  /\  y  ~~  x ) ) )
37 gruen 8688 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  C_  U  /\  ( y  e.  U  /\  y  ~~  x ) )  ->  x  e.  U )
38373com23 1160 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  (
y  e.  U  /\  y  ~~  x )  /\  x  C_  U )  ->  x  e.  U )
39383exp 1153 . . . . . . . . . . . . . . . 16  |-  ( U  e.  Univ  ->  ( ( y  e.  U  /\  y  ~~  x )  -> 
( x  C_  U  ->  x  e.  U ) ) )
4039exlimdv 1647 . . . . . . . . . . . . . . 15  |-  ( U  e.  Univ  ->  ( E. y ( y  e.  U  /\  y  ~~  x )  ->  (
x  C_  U  ->  x  e.  U ) ) )
4127, 36, 40sylsyld 55 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( E. y ( x  ~~  y  /\  y  C_  B
)  ->  ( x  C_  U  ->  x  e.  U ) ) )
4226, 41mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
x  C_  U  ->  x  e.  U ) )
4323, 42syl5bir 211 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( A. y  e.  x  y  e.  U  ->  x  e.  U ) )
4422, 43syld 43 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  x  e.  U
) )
4544ex 425 . . . . . . . . . 10  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  (
x  ~<_  B  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  x  e.  U
) ) )
4645com23 75 . . . . . . . . 9  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  ( x  ~<_  B  ->  x  e.  U
) ) )
47463expib 1157 . . . . . . . 8  |-  ( x  e.  On  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( A. y  e.  x  ( y  ~<_  B  ->  y  e.  U
)  ->  ( x  ~<_  B  ->  x  e.  U
) ) ) )
4847a2d 25 . . . . . . 7  |-  ( x  e.  On  ->  (
( ( U  e. 
Univ  /\  B  e.  U
)  ->  A. y  e.  x  ( y  ~<_  B  ->  y  e.  U
) )  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( x  ~<_  B  ->  x  e.  U
) ) ) )
499, 48syl5bi 210 . . . . . 6  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( U  e. 
Univ  /\  B  e.  U
)  ->  ( y  ~<_  B  ->  y  e.  U
) )  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( x  ~<_  B  ->  x  e.  U
) ) ) )
504, 8, 49tfis3 4838 . . . . 5  |-  ( A  e.  On  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( A  ~<_  B  ->  A  e.  U
) ) )
5150com3l 78 . . . 4  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  ( A  ~<_  B  ->  ( A  e.  On  ->  A  e.  U ) ) )
5251impr 604 . . 3  |-  ( ( U  e.  Univ  /\  ( B  e.  U  /\  A  ~<_  B ) )  ->  ( A  e.  On  ->  A  e.  U ) )
53523impia 1151 . 2  |-  ( ( U  e.  Univ  /\  ( B  e.  U  /\  A  ~<_  B )  /\  A  e.  On )  ->  A  e.  U )
54533com23 1160 1  |-  ( ( U  e.  Univ  /\  A  e.  On  /\  ( B  e.  U  /\  A  ~<_  B ) )  ->  A  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726   A.wral 2706   _Vcvv 2957    C_ wss 3321   class class class wbr 4213   Oncon0 4582    ~~ cen 7107    ~<_ cdom 7108   Univcgru 8666
This theorem is referenced by:  gruina  8694  grur1  8696
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-er 6906  df-map 7021  df-en 7111  df-dom 7112  df-gru 8667
  Copyright terms: Public domain W3C validator