MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1a Unicode version

Theorem grur1a 8658
Description: A characterization of Grothendieck's universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
gruina.1  |-  A  =  ( U  i^i  On )
Assertion
Ref Expression
grur1a  |-  ( U  e.  Univ  ->  ( R1
`  A )  C_  U )

Proof of Theorem grur1a
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gruina.1 . . . . . 6  |-  A  =  ( U  i^i  On )
2 inss1 3529 . . . . . 6  |-  ( U  i^i  On )  C_  U
31, 2eqsstri 3346 . . . . 5  |-  A  C_  U
4 sseq2 3338 . . . . 5  |-  ( U  =  (/)  ->  ( A 
C_  U  <->  A  C_  (/) ) )
53, 4mpbii 203 . . . 4  |-  ( U  =  (/)  ->  A  C_  (/) )
6 ss0 3626 . . . 4  |-  ( A 
C_  (/)  ->  A  =  (/) )
7 fveq2 5695 . . . . . 6  |-  ( A  =  (/)  ->  ( R1
`  A )  =  ( R1 `  (/) ) )
8 r10 7658 . . . . . 6  |-  ( R1
`  (/) )  =  (/)
97, 8syl6eq 2460 . . . . 5  |-  ( A  =  (/)  ->  ( R1
`  A )  =  (/) )
10 0ss 3624 . . . . 5  |-  (/)  C_  U
119, 10syl6eqss 3366 . . . 4  |-  ( A  =  (/)  ->  ( R1
`  A )  C_  U )
125, 6, 113syl 19 . . 3  |-  ( U  =  (/)  ->  ( R1
`  A )  C_  U )
1312a1i 11 . 2  |-  ( U  e.  Univ  ->  ( U  =  (/)  ->  ( R1
`  A )  C_  U ) )
141gruina 8657 . . . . 5  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  Inacc )
15 inawina 8529 . . . . 5  |-  ( A  e.  Inacc  ->  A  e.  Inacc W )
16 winaon 8527 . . . . . 6  |-  ( A  e.  Inacc W  ->  A  e.  On )
17 winalim 8534 . . . . . 6  |-  ( A  e.  Inacc W  ->  Lim  A )
18 r1lim 7662 . . . . . 6  |-  ( ( A  e.  On  /\  Lim  A )  ->  ( R1 `  A )  = 
U_ x  e.  A  ( R1 `  x ) )
1916, 17, 18syl2anc 643 . . . . 5  |-  ( A  e.  Inacc W  ->  ( R1 `  A )  = 
U_ x  e.  A  ( R1 `  x ) )
2014, 15, 193syl 19 . . . 4  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( R1 `  A )  = 
U_ x  e.  A  ( R1 `  x ) )
21 inss2 3530 . . . . . . . . . . . 12  |-  ( U  i^i  On )  C_  On
221, 21eqsstri 3346 . . . . . . . . . . 11  |-  A  C_  On
2322sseli 3312 . . . . . . . . . 10  |-  ( x  e.  A  ->  x  e.  On )
24 eleq1 2472 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
25 fveq2 5695 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
2625, 8syl6eq 2460 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( R1
`  x )  =  (/) )
2726eleq1d 2478 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( ( R1 `  x )  e.  U  <->  (/)  e.  U
) )
2824, 27imbi12d 312 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( ( x  e.  A  -> 
( R1 `  x
)  e.  U )  <-> 
( (/)  e.  A  ->  (/) 
e.  U ) ) )
29 eleq1 2472 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
30 fveq2 5695 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
3130eleq1d 2478 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( R1 `  x
)  e.  U  <->  ( R1 `  y )  e.  U
) )
3229, 31imbi12d 312 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  A  ->  ( R1 `  x
)  e.  U )  <-> 
( y  e.  A  ->  ( R1 `  y
)  e.  U ) ) )
33 eleq1 2472 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( x  e.  A  <->  suc  y  e.  A ) )
34 fveq2 5695 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
3534eleq1d 2478 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( ( R1 `  x )  e.  U  <->  ( R1 `  suc  y
)  e.  U ) )
3633, 35imbi12d 312 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( ( x  e.  A  ->  ( R1 `  x )  e.  U
)  <->  ( suc  y  e.  A  ->  ( R1
`  suc  y )  e.  U ) ) )
373sseli 3312 . . . . . . . . . . . . 13  |-  ( (/)  e.  A  ->  (/)  e.  U
)
3837a1i 11 . . . . . . . . . . . 12  |-  ( U  e.  Univ  ->  ( (/)  e.  A  ->  (/)  e.  U
) )
39 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  suc  y  e.  A
)
40 elelsuc 4621 . . . . . . . . . . . . . . . . . 18  |-  ( suc  y  e.  A  ->  suc  y  e.  suc  A )
413sseli 3312 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc  y  e.  A  ->  suc  y  e.  U
)
42 ne0i 3602 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc  y  e.  U  ->  U  =/=  (/) )
4341, 42syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc  y  e.  A  ->  U  =/=  (/) )
4414, 15, 163syl 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  On )
4543, 44sylan2 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  A  e.  On )
46 eloni 4559 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  On  ->  Ord  A )
47 ordsucelsuc 4769 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
A  ->  ( y  e.  A  <->  suc  y  e.  suc  A ) )
4845, 46, 473syl 19 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( y  e.  A  <->  suc  y  e.  suc  A
) )
4940, 48syl5ibr 213 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( suc  y  e.  A  ->  y  e.  A ) )
5039, 49mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  y  e.  A )
51 grupw 8634 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  ( R1 `  y )  e.  U )  ->  ~P ( R1 `  y )  e.  U )
5251ex 424 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  Univ  ->  ( ( R1 `  y )  e.  U  ->  ~P ( R1 `  y )  e.  U ) )
5352adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( ( R1 `  y )  e.  U  ->  ~P ( R1 `  y )  e.  U
) )
54 r1suc 7660 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  On  ->  ( R1 `  suc  y )  =  ~P ( R1
`  y ) )
5554eleq1d 2478 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  ->  (
( R1 `  suc  y )  e.  U  <->  ~P ( R1 `  y
)  e.  U ) )
5655biimprcd 217 . . . . . . . . . . . . . . . . 17  |-  ( ~P ( R1 `  y
)  e.  U  -> 
( y  e.  On  ->  ( R1 `  suc  y )  e.  U
) )
5753, 56syl6 31 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( ( R1 `  y )  e.  U  ->  ( y  e.  On  ->  ( R1 `  suc  y )  e.  U
) ) )
5850, 57embantd 52 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( y  e.  On  ->  ( R1 ` 
suc  y )  e.  U ) ) )
5958ex 424 . . . . . . . . . . . . . 14  |-  ( U  e.  Univ  ->  ( suc  y  e.  A  -> 
( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( y  e.  On  ->  ( R1 ` 
suc  y )  e.  U ) ) ) )
6059com23 74 . . . . . . . . . . . . 13  |-  ( U  e.  Univ  ->  ( ( y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( suc  y  e.  A  ->  ( y  e.  On  ->  ( R1 `  suc  y )  e.  U ) ) ) )
6160com4r 82 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  ( U  e.  Univ  ->  (
( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  ( suc  y  e.  A  ->  ( R1
`  suc  y )  e.  U ) ) ) )
62 simpr 448 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  x  e.  A )
633sseli 3312 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  A  ->  x  e.  U )
64 ne0i 3602 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  U  ->  U  =/=  (/) )
6563, 64syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  ->  U  =/=  (/) )
6665, 44sylan2 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  A  e.  On )
67 ontr1 4595 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  On  ->  (
( y  e.  x  /\  x  e.  A
)  ->  y  e.  A ) )
68 pm2.27 37 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  A  ->  (
( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  ( R1 `  y )  e.  U
) )
6967, 68syl6 31 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  On  ->  (
( y  e.  x  /\  x  e.  A
)  ->  ( (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( R1 `  y )  e.  U
) ) )
7069exp3a 426 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  (
y  e.  x  -> 
( x  e.  A  ->  ( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
) ) ) )
7170com3r 75 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  ( A  e.  On  ->  ( y  e.  x  -> 
( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
) ) ) )
7262, 66, 71sylc 58 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  (
y  e.  x  -> 
( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
) ) )
7372imp 419 . . . . . . . . . . . . . . . . 17  |-  ( ( ( U  e.  Univ  /\  x  e.  A )  /\  y  e.  x
)  ->  ( (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( R1 `  y )  e.  U
) )
7473ralimdva 2752 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( A. y  e.  x  ( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  A. y  e.  x  ( R1 `  y )  e.  U ) )
75 gruiun 8638 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  e.  U  /\  A. y  e.  x  ( R1 `  y )  e.  U
)  ->  U_ y  e.  x  ( R1 `  y )  e.  U
)
76753expia 1155 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( A. y  e.  x  ( R1 `  y )  e.  U  ->  U_ y  e.  x  ( R1 `  y )  e.  U
) )
7763, 76sylan2 461 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( A. y  e.  x  ( R1 `  y )  e.  U  ->  U_ y  e.  x  ( R1 `  y )  e.  U
) )
7874, 77syld 42 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( A. y  e.  x  ( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  U_ y  e.  x  ( R1 `  y )  e.  U ) )
79 vex 2927 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
80 r1lim 7662 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( R1 `  x )  = 
U_ y  e.  x  ( R1 `  y ) )
8179, 80mpan 652 . . . . . . . . . . . . . . . . 17  |-  ( Lim  x  ->  ( R1 `  x )  =  U_ y  e.  x  ( R1 `  y ) )
8281eleq1d 2478 . . . . . . . . . . . . . . . 16  |-  ( Lim  x  ->  ( ( R1 `  x )  e.  U  <->  U_ y  e.  x  ( R1 `  y )  e.  U ) )
8382biimprd 215 . . . . . . . . . . . . . . 15  |-  ( Lim  x  ->  ( U_ y  e.  x  ( R1 `  y )  e.  U  ->  ( R1 `  x )  e.  U
) )
8478, 83sylan9r 640 . . . . . . . . . . . . . 14  |-  ( ( Lim  x  /\  ( U  e.  Univ  /\  x  e.  A ) )  -> 
( A. y  e.  x  ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  x )  e.  U
) )
8584exp32 589 . . . . . . . . . . . . 13  |-  ( Lim  x  ->  ( U  e.  Univ  ->  ( x  e.  A  ->  ( A. y  e.  x  (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( R1 `  x )  e.  U
) ) ) )
8685com34 79 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( U  e.  Univ  ->  ( A. y  e.  x  (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( x  e.  A  ->  ( R1 `  x )  e.  U
) ) ) )
8728, 32, 36, 38, 61, 86tfinds2 4810 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( U  e.  Univ  ->  (
x  e.  A  -> 
( R1 `  x
)  e.  U ) ) )
8887com3r 75 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
x  e.  On  ->  ( U  e.  Univ  ->  ( R1 `  x )  e.  U ) ) )
8923, 88mpd 15 . . . . . . . . 9  |-  ( x  e.  A  ->  ( U  e.  Univ  ->  ( R1 `  x )  e.  U ) )
9089impcom 420 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( R1 `  x )  e.  U )
91 gruelss 8633 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  ( R1 `  x )  e.  U )  ->  ( R1 `  x )  C_  U )
9290, 91syldan 457 . . . . . . 7  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( R1 `  x )  C_  U )
9392ralrimiva 2757 . . . . . 6  |-  ( U  e.  Univ  ->  A. x  e.  A  ( R1 `  x )  C_  U
)
94 iunss 4100 . . . . . 6  |-  ( U_ x  e.  A  ( R1 `  x )  C_  U 
<-> 
A. x  e.  A  ( R1 `  x ) 
C_  U )
9593, 94sylibr 204 . . . . 5  |-  ( U  e.  Univ  ->  U_ x  e.  A  ( R1 `  x )  C_  U
)
9695adantr 452 . . . 4  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  U_ x  e.  A  ( R1 `  x )  C_  U
)
9720, 96eqsstrd 3350 . . 3  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( R1 `  A )  C_  U )
9897ex 424 . 2  |-  ( U  e.  Univ  ->  ( U  =/=  (/)  ->  ( R1 `  A )  C_  U
) )
9913, 98pm2.61dne 2652 1  |-  ( U  e.  Univ  ->  ( R1
`  A )  C_  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674   _Vcvv 2924    i^i cin 3287    C_ wss 3288   (/)c0 3596   ~Pcpw 3767   U_ciun 4061   Ord word 4548   Oncon0 4549   Lim wlim 4550   suc csuc 4551   ` cfv 5421   R1cr1 7652   Inacc Wcwina 8521   Inacccina 8522   Univcgru 8629
This theorem is referenced by:  grur1  8659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-ac2 8307
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-r1 7654  df-card 7790  df-cf 7792  df-ac 7961  df-wina 8523  df-ina 8524  df-gru 8630
  Copyright terms: Public domain W3C validator