MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1a Unicode version

Theorem grur1a 8441
Description: A characterization of Grothendieck's universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
gruina.1  |-  A  =  ( U  i^i  On )
Assertion
Ref Expression
grur1a  |-  ( U  e.  Univ  ->  ( R1
`  A )  C_  U )

Proof of Theorem grur1a
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gruina.1 . . . . . 6  |-  A  =  ( U  i^i  On )
2 inss1 3389 . . . . . 6  |-  ( U  i^i  On )  C_  U
31, 2eqsstri 3208 . . . . 5  |-  A  C_  U
4 sseq2 3200 . . . . 5  |-  ( U  =  (/)  ->  ( A 
C_  U  <->  A  C_  (/) ) )
53, 4mpbii 202 . . . 4  |-  ( U  =  (/)  ->  A  C_  (/) )
6 ss0 3485 . . . 4  |-  ( A 
C_  (/)  ->  A  =  (/) )
7 0ss 3483 . . . . 5  |-  (/)  C_  U
8 fveq2 5525 . . . . . . 7  |-  ( A  =  (/)  ->  ( R1
`  A )  =  ( R1 `  (/) ) )
9 r10 7440 . . . . . . 7  |-  ( R1
`  (/) )  =  (/)
108, 9syl6eq 2331 . . . . . 6  |-  ( A  =  (/)  ->  ( R1
`  A )  =  (/) )
1110sseq1d 3205 . . . . 5  |-  ( A  =  (/)  ->  ( ( R1 `  A ) 
C_  U  <->  (/)  C_  U
) )
127, 11mpbiri 224 . . . 4  |-  ( A  =  (/)  ->  ( R1
`  A )  C_  U )
135, 6, 123syl 18 . . 3  |-  ( U  =  (/)  ->  ( R1
`  A )  C_  U )
1413a1i 10 . 2  |-  ( U  e.  Univ  ->  ( U  =  (/)  ->  ( R1
`  A )  C_  U ) )
151gruina 8440 . . . . 5  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  Inacc )
16 inawina 8312 . . . . 5  |-  ( A  e.  Inacc  ->  A  e.  Inacc W )
17 winaon 8310 . . . . . 6  |-  ( A  e.  Inacc W  ->  A  e.  On )
18 winalim 8317 . . . . . 6  |-  ( A  e.  Inacc W  ->  Lim  A )
19 r1lim 7444 . . . . . 6  |-  ( ( A  e.  On  /\  Lim  A )  ->  ( R1 `  A )  = 
U_ x  e.  A  ( R1 `  x ) )
2017, 18, 19syl2anc 642 . . . . 5  |-  ( A  e.  Inacc W  ->  ( R1 `  A )  = 
U_ x  e.  A  ( R1 `  x ) )
2115, 16, 203syl 18 . . . 4  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( R1 `  A )  = 
U_ x  e.  A  ( R1 `  x ) )
22 inss2 3390 . . . . . . . . . . . 12  |-  ( U  i^i  On )  C_  On
231, 22eqsstri 3208 . . . . . . . . . . 11  |-  A  C_  On
2423sseli 3176 . . . . . . . . . 10  |-  ( x  e.  A  ->  x  e.  On )
25 eleq1 2343 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
26 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
2726, 9syl6eq 2331 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( R1
`  x )  =  (/) )
2827eleq1d 2349 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( ( R1 `  x )  e.  U  <->  (/)  e.  U
) )
2925, 28imbi12d 311 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( ( x  e.  A  -> 
( R1 `  x
)  e.  U )  <-> 
( (/)  e.  A  ->  (/) 
e.  U ) ) )
30 eleq1 2343 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
31 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
3231eleq1d 2349 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( R1 `  x
)  e.  U  <->  ( R1 `  y )  e.  U
) )
3330, 32imbi12d 311 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  A  ->  ( R1 `  x
)  e.  U )  <-> 
( y  e.  A  ->  ( R1 `  y
)  e.  U ) ) )
34 eleq1 2343 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( x  e.  A  <->  suc  y  e.  A ) )
35 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
3635eleq1d 2349 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( ( R1 `  x )  e.  U  <->  ( R1 `  suc  y
)  e.  U ) )
3734, 36imbi12d 311 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( ( x  e.  A  ->  ( R1 `  x )  e.  U
)  <->  ( suc  y  e.  A  ->  ( R1
`  suc  y )  e.  U ) ) )
383sseli 3176 . . . . . . . . . . . . 13  |-  ( (/)  e.  A  ->  (/)  e.  U
)
3938a1i 10 . . . . . . . . . . . 12  |-  ( U  e.  Univ  ->  ( (/)  e.  A  ->  (/)  e.  U
) )
40 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  suc  y  e.  A
)
41 elelsuc 4464 . . . . . . . . . . . . . . . . . 18  |-  ( suc  y  e.  A  ->  suc  y  e.  suc  A )
423sseli 3176 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc  y  e.  A  ->  suc  y  e.  U
)
43 ne0i 3461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc  y  e.  U  ->  U  =/=  (/) )
4442, 43syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc  y  e.  A  ->  U  =/=  (/) )
4515, 16, 173syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  On )
4644, 45sylan2 460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  A  e.  On )
47 eloni 4402 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  On  ->  Ord  A )
48 ordsucelsuc 4613 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
A  ->  ( y  e.  A  <->  suc  y  e.  suc  A ) )
4946, 47, 483syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( y  e.  A  <->  suc  y  e.  suc  A
) )
5041, 49syl5ibr 212 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( suc  y  e.  A  ->  y  e.  A ) )
5140, 50mpd 14 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  y  e.  A )
52 grupw 8417 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  ( R1 `  y )  e.  U )  ->  ~P ( R1 `  y )  e.  U )
5352ex 423 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  Univ  ->  ( ( R1 `  y )  e.  U  ->  ~P ( R1 `  y )  e.  U ) )
5453adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( ( R1 `  y )  e.  U  ->  ~P ( R1 `  y )  e.  U
) )
55 r1suc 7442 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  On  ->  ( R1 `  suc  y )  =  ~P ( R1
`  y ) )
5655eleq1d 2349 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  ->  (
( R1 `  suc  y )  e.  U  <->  ~P ( R1 `  y
)  e.  U ) )
5756biimprcd 216 . . . . . . . . . . . . . . . . 17  |-  ( ~P ( R1 `  y
)  e.  U  -> 
( y  e.  On  ->  ( R1 `  suc  y )  e.  U
) )
5854, 57syl6 29 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( ( R1 `  y )  e.  U  ->  ( y  e.  On  ->  ( R1 `  suc  y )  e.  U
) ) )
5951, 58embantd 50 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( y  e.  On  ->  ( R1 ` 
suc  y )  e.  U ) ) )
6059ex 423 . . . . . . . . . . . . . 14  |-  ( U  e.  Univ  ->  ( suc  y  e.  A  -> 
( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( y  e.  On  ->  ( R1 ` 
suc  y )  e.  U ) ) ) )
6160com23 72 . . . . . . . . . . . . 13  |-  ( U  e.  Univ  ->  ( ( y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( suc  y  e.  A  ->  ( y  e.  On  ->  ( R1 `  suc  y )  e.  U ) ) ) )
6261com4r 80 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  ( U  e.  Univ  ->  (
( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  ( suc  y  e.  A  ->  ( R1
`  suc  y )  e.  U ) ) ) )
63 simpr 447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  x  e.  A )
643sseli 3176 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  A  ->  x  e.  U )
65 ne0i 3461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  U  ->  U  =/=  (/) )
6664, 65syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  ->  U  =/=  (/) )
6766, 45sylan2 460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  A  e.  On )
68 ontr1 4438 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  On  ->  (
( y  e.  x  /\  x  e.  A
)  ->  y  e.  A ) )
69 pm2.27 35 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  A  ->  (
( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  ( R1 `  y )  e.  U
) )
7068, 69syl6 29 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  On  ->  (
( y  e.  x  /\  x  e.  A
)  ->  ( (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( R1 `  y )  e.  U
) ) )
7170exp3a 425 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  (
y  e.  x  -> 
( x  e.  A  ->  ( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
) ) ) )
7271com3r 73 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  ( A  e.  On  ->  ( y  e.  x  -> 
( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
) ) ) )
7363, 67, 72sylc 56 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  (
y  e.  x  -> 
( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
) ) )
7473imp 418 . . . . . . . . . . . . . . . . 17  |-  ( ( ( U  e.  Univ  /\  x  e.  A )  /\  y  e.  x
)  ->  ( (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( R1 `  y )  e.  U
) )
7574ralimdva 2621 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( A. y  e.  x  ( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  A. y  e.  x  ( R1 `  y )  e.  U ) )
76 gruiun 8421 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  e.  U  /\  A. y  e.  x  ( R1 `  y )  e.  U
)  ->  U_ y  e.  x  ( R1 `  y )  e.  U
)
77763expia 1153 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( A. y  e.  x  ( R1 `  y )  e.  U  ->  U_ y  e.  x  ( R1 `  y )  e.  U
) )
7864, 77sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( A. y  e.  x  ( R1 `  y )  e.  U  ->  U_ y  e.  x  ( R1 `  y )  e.  U
) )
7975, 78syld 40 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( A. y  e.  x  ( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  U_ y  e.  x  ( R1 `  y )  e.  U ) )
80 vex 2791 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
81 r1lim 7444 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( R1 `  x )  = 
U_ y  e.  x  ( R1 `  y ) )
8280, 81mpan 651 . . . . . . . . . . . . . . . . 17  |-  ( Lim  x  ->  ( R1 `  x )  =  U_ y  e.  x  ( R1 `  y ) )
8382eleq1d 2349 . . . . . . . . . . . . . . . 16  |-  ( Lim  x  ->  ( ( R1 `  x )  e.  U  <->  U_ y  e.  x  ( R1 `  y )  e.  U ) )
8483biimprd 214 . . . . . . . . . . . . . . 15  |-  ( Lim  x  ->  ( U_ y  e.  x  ( R1 `  y )  e.  U  ->  ( R1 `  x )  e.  U
) )
8579, 84sylan9r 639 . . . . . . . . . . . . . 14  |-  ( ( Lim  x  /\  ( U  e.  Univ  /\  x  e.  A ) )  -> 
( A. y  e.  x  ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  x )  e.  U
) )
8685exp32 588 . . . . . . . . . . . . 13  |-  ( Lim  x  ->  ( U  e.  Univ  ->  ( x  e.  A  ->  ( A. y  e.  x  (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( R1 `  x )  e.  U
) ) ) )
8786com34 77 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( U  e.  Univ  ->  ( A. y  e.  x  (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( x  e.  A  ->  ( R1 `  x )  e.  U
) ) ) )
8829, 33, 37, 39, 62, 87tfinds2 4654 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( U  e.  Univ  ->  (
x  e.  A  -> 
( R1 `  x
)  e.  U ) ) )
8988com3r 73 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
x  e.  On  ->  ( U  e.  Univ  ->  ( R1 `  x )  e.  U ) ) )
9024, 89mpd 14 . . . . . . . . 9  |-  ( x  e.  A  ->  ( U  e.  Univ  ->  ( R1 `  x )  e.  U ) )
9190impcom 419 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( R1 `  x )  e.  U )
92 gruelss 8416 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  ( R1 `  x )  e.  U )  ->  ( R1 `  x )  C_  U )
9391, 92syldan 456 . . . . . . 7  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( R1 `  x )  C_  U )
9493ralrimiva 2626 . . . . . 6  |-  ( U  e.  Univ  ->  A. x  e.  A  ( R1 `  x )  C_  U
)
95 iunss 3943 . . . . . 6  |-  ( U_ x  e.  A  ( R1 `  x )  C_  U 
<-> 
A. x  e.  A  ( R1 `  x ) 
C_  U )
9694, 95sylibr 203 . . . . 5  |-  ( U  e.  Univ  ->  U_ x  e.  A  ( R1 `  x )  C_  U
)
9796adantr 451 . . . 4  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  U_ x  e.  A  ( R1 `  x )  C_  U
)
9821, 97eqsstrd 3212 . . 3  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( R1 `  A )  C_  U )
9998ex 423 . 2  |-  ( U  e.  Univ  ->  ( U  =/=  (/)  ->  ( R1 `  A )  C_  U
) )
10014, 99pm2.61dne 2523 1  |-  ( U  e.  Univ  ->  ( R1
`  A )  C_  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   U_ciun 3905   Ord word 4391   Oncon0 4392   Lim wlim 4393   suc csuc 4394   ` cfv 5255   R1cr1 7434   Inacc Wcwina 8304   Inacccina 8305   Univcgru 8412
This theorem is referenced by:  grur1  8442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-ac2 8089
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-r1 7436  df-card 7572  df-cf 7574  df-ac 7743  df-wina 8306  df-ina 8307  df-gru 8413
  Copyright terms: Public domain W3C validator