MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutsk1 Structured version   Unicode version

Theorem grutsk1 8696
Description: Grothendieck's universes are the same as transitive Tarski's classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 8658.) (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
grutsk1  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  T  e.  Univ )

Proof of Theorem grutsk1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . 2  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  Tr  T )
2 tskpw 8628 . . . . 5  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  ~P x  e.  T )
32adantlr 696 . . . 4  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ~P x  e.  T
)
4 tskpr 8645 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  x  e.  T  /\  y  e.  T )  ->  { x ,  y }  e.  T )
543expa 1153 . . . . . 6  |-  ( ( ( T  e.  Tarski  /\  x  e.  T )  /\  y  e.  T
)  ->  { x ,  y }  e.  T )
65ralrimiva 2789 . . . . 5  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  A. y  e.  T  { x ,  y }  e.  T )
76adantlr 696 . . . 4  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  A. y  e.  T  { x ,  y }  e.  T )
8 elmapg 7031 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  (
y  e.  ( T  ^m  x )  <->  y :
x --> T ) )
98adantlr 696 . . . . . 6  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ( y  e.  ( T  ^m  x )  <-> 
y : x --> T ) )
10 tskurn 8664 . . . . . . 7  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T  /\  y : x --> T )  ->  U. ran  y  e.  T )
11103expia 1155 . . . . . 6  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ( y : x --> T  ->  U. ran  y  e.  T ) )
129, 11sylbid 207 . . . . 5  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ( y  e.  ( T  ^m  x )  ->  U. ran  y  e.  T ) )
1312ralrimiv 2788 . . . 4  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  A. y  e.  ( T  ^m  x ) U. ran  y  e.  T )
143, 7, 133jca 1134 . . 3  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ( ~P x  e.  T  /\  A. y  e.  T  { x ,  y }  e.  T  /\  A. y  e.  ( T  ^m  x
) U. ran  y  e.  T ) )
1514ralrimiva 2789 . 2  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  A. x  e.  T  ( ~P x  e.  T  /\  A. y  e.  T  {
x ,  y }  e.  T  /\  A. y  e.  ( T  ^m  x ) U. ran  y  e.  T )
)
16 elgrug 8667 . . 3  |-  ( T  e.  Tarski  ->  ( T  e. 
Univ 
<->  ( Tr  T  /\  A. x  e.  T  ( ~P x  e.  T  /\  A. y  e.  T  { x ,  y }  e.  T  /\  A. y  e.  ( T  ^m  x ) U. ran  y  e.  T
) ) ) )
1716adantr 452 . 2  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  ( T  e.  Univ  <->  ( Tr  T  /\  A. x  e.  T  ( ~P x  e.  T  /\  A. y  e.  T  { x ,  y }  e.  T  /\  A. y  e.  ( T  ^m  x
) U. ran  y  e.  T ) ) ) )
181, 15, 17mpbir2and 889 1  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  T  e.  Univ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1725   A.wral 2705   ~Pcpw 3799   {cpr 3815   U.cuni 4015   Tr wtr 4302   ran crn 4879   -->wf 5450  (class class class)co 6081    ^m cmap 7018   Tarskictsk 8623   Univcgru 8665
This theorem is referenced by:  grutsk  8697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-ac2 8343
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-smo 6608  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-har 7526  df-r1 7690  df-card 7826  df-aleph 7827  df-cf 7828  df-acn 7829  df-ac 7997  df-wina 8559  df-ina 8560  df-tsk 8624  df-gru 8666
  Copyright terms: Public domain W3C validator