MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruwun Unicode version

Theorem gruwun 8621
Description: A nonempty Grothendieck's universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
gruwun  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  U  e. WUni )

Proof of Theorem gruwun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grutr 8601 . . 3  |-  ( U  e.  Univ  ->  Tr  U
)
21adantr 452 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  Tr  U )
3 simpr 448 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  U  =/=  (/) )
4 gruuni 8608 . . . . 5  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  U. x  e.  U )
54adantlr 696 . . . 4  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  x  e.  U )  ->  U. x  e.  U
)
6 grupw 8603 . . . . 5  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ~P x  e.  U )
76adantlr 696 . . . 4  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  x  e.  U )  ->  ~P x  e.  U
)
8 grupr 8605 . . . . . . 7  |-  ( ( U  e.  Univ  /\  x  e.  U  /\  y  e.  U )  ->  { x ,  y }  e.  U )
983expa 1153 . . . . . 6  |-  ( ( ( U  e.  Univ  /\  x  e.  U )  /\  y  e.  U
)  ->  { x ,  y }  e.  U )
109adantllr 700 . . . . 5  |-  ( ( ( ( U  e. 
Univ  /\  U  =/=  (/) )  /\  x  e.  U )  /\  y  e.  U
)  ->  { x ,  y }  e.  U )
1110ralrimiva 2732 . . . 4  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  x  e.  U )  ->  A. y  e.  U  { x ,  y }  e.  U )
125, 7, 113jca 1134 . . 3  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  x  e.  U )  ->  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) )
1312ralrimiva 2732 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) )
14 iswun 8512 . . 3  |-  ( U  e.  Univ  ->  ( U  e. WUni 
<->  ( Tr  U  /\  U  =/=  (/)  /\  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) ) )
1514adantr 452 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( U  e. WUni  <->  ( Tr  U  /\  U  =/=  (/)  /\  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) ) )
162, 3, 13, 15mpbir3and 1137 1  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  U  e. WUni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1717    =/= wne 2550   A.wral 2649   (/)c0 3571   ~Pcpw 3742   {cpr 3758   U.cuni 3957   Tr wtr 4243  WUnicwun 8508   Univcgru 8598
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-map 6956  df-wun 8510  df-gru 8599
  Copyright terms: Public domain W3C validator