MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d Structured version   Unicode version

Theorem gsum2d 15547
Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d.b  |-  B  =  ( Base `  G
)
gsum2d.z  |-  .0.  =  ( 0g `  G )
gsum2d.g  |-  ( ph  ->  G  e. CMnd )
gsum2d.a  |-  ( ph  ->  A  e.  V )
gsum2d.r  |-  ( ph  ->  Rel  A )
gsum2d.d  |-  ( ph  ->  D  e.  W )
gsum2d.s  |-  ( ph  ->  dom  A  C_  D
)
gsum2d.f  |-  ( ph  ->  F : A --> B )
gsum2d.w  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
Assertion
Ref Expression
gsum2d  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
Distinct variable groups:    j, k, A    j, F, k    j, G, k    ph, j, k    B, j, k    D, j, k    .0. , j, k
Allowed substitution hints:    V( j, k)    W( j, k)

Proof of Theorem gsum2d
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d.w . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
2 dmfi 7390 . . . 4  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  dom  ( `' F " ( _V  \  {  .0.  } ) )  e. 
Fin )
31, 2syl 16 . . 3  |-  ( ph  ->  dom  ( `' F " ( _V  \  {  .0.  } ) )  e. 
Fin )
4 reseq2 5142 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( A  |`  x )  =  ( A  |`  (/) ) )
5 res0 5151 . . . . . . . . . 10  |-  ( A  |`  (/) )  =  (/)
64, 5syl6eq 2485 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  |`  x )  =  (/) )
76reseq2d 5147 . . . . . . . 8  |-  ( x  =  (/)  ->  ( F  |`  ( A  |`  x
) )  =  ( F  |`  (/) ) )
8 res0 5151 . . . . . . . 8  |-  ( F  |`  (/) )  =  (/)
97, 8syl6eq 2485 . . . . . . 7  |-  ( x  =  (/)  ->  ( F  |`  ( A  |`  x
) )  =  (/) )
109oveq2d 6098 . . . . . 6  |-  ( x  =  (/)  ->  ( G 
gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G  gsumg  (/) ) )
11 mpteq1 4290 . . . . . . . 8  |-  ( x  =  (/)  ->  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  (/)  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
12 mpt0 5573 . . . . . . . 8  |-  ( j  e.  (/)  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  =  (/)
1311, 12syl6eq 2485 . . . . . . 7  |-  ( x  =  (/)  ->  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  (/) )
1413oveq2d 6098 . . . . . 6  |-  ( x  =  (/)  ->  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  (/) ) )
1510, 14eqeq12d 2451 . . . . 5  |-  ( x  =  (/)  ->  ( ( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( G  gsumg  (/) )  =  ( G 
gsumg  (/) ) ) )
1615imbi2d 309 . . . 4  |-  ( x  =  (/)  ->  ( (
ph  ->  ( G  gsumg  ( F  |`  ( A  |`  x
) ) )  =  ( G  gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  <-> 
( ph  ->  ( G 
gsumg  (/) )  =  ( G 
gsumg  (/) ) ) ) )
17 reseq2 5142 . . . . . . . 8  |-  ( x  =  y  ->  ( A  |`  x )  =  ( A  |`  y
) )
1817reseq2d 5147 . . . . . . 7  |-  ( x  =  y  ->  ( F  |`  ( A  |`  x ) )  =  ( F  |`  ( A  |`  y ) ) )
1918oveq2d 6098 . . . . . 6  |-  ( x  =  y  ->  ( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  y ) ) ) )
20 mpteq1 4290 . . . . . . 7  |-  ( x  =  y  ->  (
j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  y  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
2120oveq2d 6098 . . . . . 6  |-  ( x  =  y  ->  ( G  gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
2219, 21eqeq12d 2451 . . . . 5  |-  ( x  =  y  ->  (
( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( G  gsumg  ( F  |`  ( A  |`  y ) ) )  =  ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
2322imbi2d 309 . . . 4  |-  ( x  =  y  ->  (
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G  gsumg  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  <-> 
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  y ) ) )  =  ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
24 reseq2 5142 . . . . . . . 8  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A  |`  x )  =  ( A  |`  ( y  u.  { z } ) ) )
2524reseq2d 5147 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  ( F  |`  ( A  |`  x ) )  =  ( F  |`  ( A  |`  (
y  u.  { z } ) ) ) )
2625oveq2d 6098 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( G  gsumg  ( F  |`  ( A  |`  x
) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) ) )
27 mpteq1 4290 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  =  ( j  e.  ( y  u.  {
z } )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
2827oveq2d 6098 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( G  gsumg  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
2926, 28eqeq12d 2451 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( G 
gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G  gsumg  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( G  gsumg  ( F  |`  ( A  |`  ( y  u.  {
z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
3029imbi2d 309 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  <-> 
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  ( y  u.  {
z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
31 reseq2 5142 . . . . . . . 8  |-  ( x  =  dom  ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( A  |`  x )  =  ( A  |`  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
3231reseq2d 5147 . . . . . . 7  |-  ( x  =  dom  ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( F  |`  ( A  |`  x ) )  =  ( F  |`  ( A  |`  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
3332oveq2d 6098 . . . . . 6  |-  ( x  =  dom  ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  dom  ( `' F " ( _V  \  {  .0.  } ) ) ) ) ) )
34 mpteq1 4290 . . . . . . 7  |-  ( x  =  dom  ( `' F " ( _V 
\  {  .0.  }
) )  ->  (
j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
3534oveq2d 6098 . . . . . 6  |-  ( x  =  dom  ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( G  gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
3633, 35eqeq12d 2451 . . . . 5  |-  ( x  =  dom  ( `' F " ( _V 
\  {  .0.  }
) )  ->  (
( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( G  gsumg  ( F  |`  ( A  |` 
dom  ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  =  ( G  gsumg  ( j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
3736imbi2d 309 . . . 4  |-  ( x  =  dom  ( `' F " ( _V 
\  {  .0.  }
) )  ->  (
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G  gsumg  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  <-> 
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  dom  ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  =  ( G  gsumg  ( j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
38 eqidd 2438 . . . 4  |-  ( ph  ->  ( G  gsumg  (/) )  =  ( G  gsumg  (/) ) )
39 oveq1 6089 . . . . . . 7  |-  ( ( G  gsumg  ( F  |`  ( A  |`  y ) ) )  =  ( G 
gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  -> 
( ( G  gsumg  ( F  |`  ( A  |`  y
) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) )  =  ( ( G 
gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
40 gsum2d.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
41 gsum2d.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
42 eqid 2437 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
43 gsum2d.g . . . . . . . . . . 11  |-  ( ph  ->  G  e. CMnd )
4443adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  ->  G  e. CMnd )
45 gsum2d.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  V )
46 resexg 5186 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( A  |`  ( y  u. 
{ z } ) )  e.  _V )
4745, 46syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( A  |`  (
y  u.  { z } ) )  e. 
_V )
4847adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( A  |`  (
y  u.  { z } ) )  e. 
_V )
49 gsum2d.f . . . . . . . . . . . 12  |-  ( ph  ->  F : A --> B )
50 resss 5171 . . . . . . . . . . . 12  |-  ( A  |`  ( y  u.  {
z } ) ) 
C_  A
51 fssres 5611 . . . . . . . . . . . 12  |-  ( ( F : A --> B  /\  ( A  |`  ( y  u.  { z } ) )  C_  A
)  ->  ( F  |`  ( A  |`  (
y  u.  { z } ) ) ) : ( A  |`  ( y  u.  {
z } ) ) --> B )
5249, 50, 51sylancl 645 . . . . . . . . . . 11  |-  ( ph  ->  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) : ( A  |`  ( y  u.  { z } ) ) --> B )
5352adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) : ( A  |`  ( y  u.  { z } ) ) --> B )
54 resss 5171 . . . . . . . . . . . . 13  |-  ( F  |`  ( A  |`  (
y  u.  { z } ) ) ) 
C_  F
55 cnvss 5046 . . . . . . . . . . . . 13  |-  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  C_  F  ->  `' ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) )  C_  `' F )
56 imass1 5240 . . . . . . . . . . . . 13  |-  ( `' ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) )  C_  `' F  ->  ( `' ( F  |`  ( A  |`  ( y  u.  {
z } ) ) ) " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
5754, 55, 56mp2b 10 . . . . . . . . . . . 12  |-  ( `' ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) " ( _V  \  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
58 ssfi 7330 . . . . . . . . . . . 12  |-  ( ( ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( F  |`  ( A  |`  ( y  u.  {
z } ) ) ) " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )  -> 
( `' ( F  |`  ( A  |`  (
y  u.  { z } ) ) )
" ( _V  \  {  .0.  } ) )  e.  Fin )
591, 57, 58sylancl 645 . . . . . . . . . . 11  |-  ( ph  ->  ( `' ( F  |`  ( A  |`  (
y  u.  { z } ) ) )
" ( _V  \  {  .0.  } ) )  e.  Fin )
6059adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( `' ( F  |`  ( A  |`  (
y  u.  { z } ) ) )
" ( _V  \  {  .0.  } ) )  e.  Fin )
61 simprr 735 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  ->  -.  z  e.  y
)
62 disjsn 3869 . . . . . . . . . . . . 13  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
6361, 62sylibr 205 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( y  i^i  {
z } )  =  (/) )
6463reseq2d 5147 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( A  |`  (
y  i^i  { z } ) )  =  ( A  |`  (/) ) )
65 resindi 5163 . . . . . . . . . . 11  |-  ( A  |`  ( y  i^i  {
z } ) )  =  ( ( A  |`  y )  i^i  ( A  |`  { z } ) )
6664, 65, 53eqtr3g 2492 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( A  |`  y )  i^i  ( A  |`  { z } ) )  =  (/) )
67 resundi 5161 . . . . . . . . . . 11  |-  ( A  |`  ( y  u.  {
z } ) )  =  ( ( A  |`  y )  u.  ( A  |`  { z } ) )
6867a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( A  |`  (
y  u.  { z } ) )  =  ( ( A  |`  y )  u.  ( A  |`  { z } ) ) )
6940, 41, 42, 44, 48, 53, 60, 66, 68gsumsplit 15531 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( ( G  gsumg  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |`  y ) ) ) ( +g  `  G
) ( G  gsumg  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |` 
{ z } ) ) ) ) )
70 ssun1 3511 . . . . . . . . . . . 12  |-  y  C_  ( y  u.  {
z } )
71 ssres2 5174 . . . . . . . . . . . 12  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( A  |`  y )  C_  ( A  |`  ( y  u. 
{ z } ) ) )
72 resabs1 5176 . . . . . . . . . . . 12  |-  ( ( A  |`  y )  C_  ( A  |`  (
y  u.  { z } ) )  -> 
( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  y ) )  =  ( F  |`  ( A  |`  y
) ) )
7370, 71, 72mp2b 10 . . . . . . . . . . 11  |-  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |`  y ) )  =  ( F  |`  ( A  |`  y ) )
7473oveq2i 6093 . . . . . . . . . 10  |-  ( G 
gsumg  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  y ) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  y ) ) )
75 ssun2 3512 . . . . . . . . . . . 12  |-  { z }  C_  ( y  u.  { z } )
76 ssres2 5174 . . . . . . . . . . . 12  |-  ( { z }  C_  (
y  u.  { z } )  ->  ( A  |`  { z } )  C_  ( A  |`  ( y  u.  {
z } ) ) )
77 resabs1 5176 . . . . . . . . . . . 12  |-  ( ( A  |`  { z } )  C_  ( A  |`  ( y  u. 
{ z } ) )  ->  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |` 
{ z } ) )  =  ( F  |`  ( A  |`  { z } ) ) )
7875, 76, 77mp2b 10 . . . . . . . . . . 11  |-  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |` 
{ z } ) )  =  ( F  |`  ( A  |`  { z } ) )
7978oveq2i 6093 . . . . . . . . . 10  |-  ( G 
gsumg  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  { z } ) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) )
8074, 79oveq12i 6094 . . . . . . . . 9  |-  ( ( G  gsumg  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  y ) ) ) ( +g  `  G ) ( G 
gsumg  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  { z } ) ) ) )  =  ( ( G  gsumg  ( F  |`  ( A  |`  y ) ) ) ( +g  `  G
) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) )
8169, 80syl6eq 2485 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( ( G  gsumg  ( F  |`  ( A  |`  y
) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
82 simprl 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
y  e.  Fin )
83 imaexg 5218 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( A " { j } )  e.  _V )
8445, 83syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( A " {
j } )  e. 
_V )
85 vex 2960 . . . . . . . . . . . . . . 15  |-  j  e. 
_V
86 vex 2960 . . . . . . . . . . . . . . 15  |-  k  e. 
_V
8785, 86elimasn 5230 . . . . . . . . . . . . . 14  |-  ( k  e.  ( A " { j } )  <->  <. j ,  k >.  e.  A )
88 df-ov 6085 . . . . . . . . . . . . . . 15  |-  ( j F k )  =  ( F `  <. j ,  k >. )
8949ffvelrnda 5871 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  <. j ,  k >.  e.  A
)  ->  ( F `  <. j ,  k
>. )  e.  B
)
9088, 89syl5eqel 2521 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  <. j ,  k >.  e.  A
)  ->  ( j F k )  e.  B )
9187, 90sylan2b 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( A " { j } ) )  -> 
( j F k )  e.  B )
92 eqid 2437 . . . . . . . . . . . . 13  |-  ( k  e.  ( A " { j } ) 
|->  ( j F k ) )  =  ( k  e.  ( A
" { j } )  |->  ( j F k ) )
9391, 92fmptd 5894 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( A " { j } )  |->  ( j F k ) ) : ( A " { j } ) --> B )
94 rnfi 7392 . . . . . . . . . . . . . 14  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ran  ( `' F " ( _V  \  {  .0.  } ) )  e. 
Fin )
951, 94syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  ( `' F " ( _V  \  {  .0.  } ) )  e. 
Fin )
9687biimpi 188 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( A " { j } )  ->  <. j ,  k
>.  e.  A )
9785, 86opelrn 5102 . . . . . . . . . . . . . . . . . 18  |-  ( <.
j ,  k >.  e.  ( `' F "
( _V  \  {  .0.  } ) )  -> 
k  e.  ran  ( `' F " ( _V 
\  {  .0.  }
) ) )
9897con3i 130 . . . . . . . . . . . . . . . . 17  |-  ( -.  k  e.  ran  ( `' F " ( _V 
\  {  .0.  }
) )  ->  -.  <.
j ,  k >.  e.  ( `' F "
( _V  \  {  .0.  } ) ) )
9996, 98anim12i 551 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ( A
" { j } )  /\  -.  k  e.  ran  ( `' F " ( _V  \  {  .0.  } ) ) )  ->  ( <. j ,  k >.  e.  A  /\  -.  <. j ,  k
>.  e.  ( `' F " ( _V  \  {  .0.  } ) ) ) )
100 eldif 3331 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( A
" { j } )  \  ran  ( `' F " ( _V 
\  {  .0.  }
) ) )  <->  ( k  e.  ( A " {
j } )  /\  -.  k  e.  ran  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
101 eldif 3331 . . . . . . . . . . . . . . . 16  |-  ( <.
j ,  k >.  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) )  <->  ( <. j ,  k >.  e.  A  /\  -.  <. j ,  k
>.  e.  ( `' F " ( _V  \  {  .0.  } ) ) ) )
10299, 100, 1013imtr4i 259 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( A
" { j } )  \  ran  ( `' F " ( _V 
\  {  .0.  }
) ) )  ->  <. j ,  k >.  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
103 ssid 3368 . . . . . . . . . . . . . . . . . 18  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
104103a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
10549, 104suppssr 5865 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  <. j ,  k >.  e.  ( A  \  ( `' F " ( _V  \  {  .0.  } ) ) ) )  ->  ( F `  <. j ,  k
>. )  =  .0.  )
10688, 105syl5eq 2481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  <. j ,  k >.  e.  ( A  \  ( `' F " ( _V  \  {  .0.  } ) ) ) )  ->  ( j F k )  =  .0.  )
107102, 106sylan2 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( A " { j } ) 
\  ran  ( `' F " ( _V  \  {  .0.  } ) ) ) )  ->  (
j F k )  =  .0.  )
108107suppss2 6301 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) " ( _V  \  {  .0.  }
) )  C_  ran  ( `' F " ( _V 
\  {  .0.  }
) ) )
109 ssfi 7330 . . . . . . . . . . . . 13  |-  ( ( ran  ( `' F " ( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( k  e.  ( A " { j } )  |->  ( j F k ) )
" ( _V  \  {  .0.  } ) ) 
C_  ran  ( `' F " ( _V  \  {  .0.  } ) ) )  ->  ( `' ( k  e.  ( A " { j } )  |->  ( j F k ) )
" ( _V  \  {  .0.  } ) )  e.  Fin )
11095, 108, 109syl2anc 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) " ( _V  \  {  .0.  }
) )  e.  Fin )
11140, 41, 43, 84, 93, 110gsumcl 15522 . . . . . . . . . . 11  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B )
112111ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Fin  /\  -.  z  e.  y
) )  /\  j  e.  y )  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B )
113 vex 2960 . . . . . . . . . . 11  |-  z  e. 
_V
114113a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
z  e.  _V )
115 sneq 3826 . . . . . . . . . . . . . . . . 17  |-  ( j  =  z  ->  { j }  =  { z } )
116115imaeq2d 5204 . . . . . . . . . . . . . . . 16  |-  ( j  =  z  ->  ( A " { j } )  =  ( A
" { z } ) )
117 oveq1 6089 . . . . . . . . . . . . . . . 16  |-  ( j  =  z  ->  (
j F k )  =  ( z F k ) )
118116, 117mpteq12dv 4288 . . . . . . . . . . . . . . 15  |-  ( j  =  z  ->  (
k  e.  ( A
" { j } )  |->  ( j F k ) )  =  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )
119118oveq2d 6098 . . . . . . . . . . . . . 14  |-  ( j  =  z  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) ) )
120119eleq1d 2503 . . . . . . . . . . . . 13  |-  ( j  =  z  ->  (
( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B  <->  ( G  gsumg  ( k  e.  ( A
" { z } )  |->  ( z F k ) ) )  e.  B ) )
121120imbi2d 309 . . . . . . . . . . . 12  |-  ( j  =  z  ->  (
( ph  ->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B )  <-> 
( ph  ->  ( G 
gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  e.  B ) ) )
122121, 111chvarv 1970 . . . . . . . . . . 11  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  e.  B )
123122adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  e.  B )
12440, 42, 44, 82, 112, 114, 61, 123, 119gsumunsn 15545 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) ) ) )
125115reseq2d 5147 . . . . . . . . . . . . . . . 16  |-  ( j  =  z  ->  ( A  |`  { j } )  =  ( A  |`  { z } ) )
126125reseq2d 5147 . . . . . . . . . . . . . . 15  |-  ( j  =  z  ->  ( F  |`  ( A  |`  { j } ) )  =  ( F  |`  ( A  |`  { z } ) ) )
127126oveq2d 6098 . . . . . . . . . . . . . 14  |-  ( j  =  z  ->  ( G  gsumg  ( F  |`  ( A  |`  { j } ) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) )
128119, 127eqeq12d 2451 . . . . . . . . . . . . 13  |-  ( j  =  z  ->  (
( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { j } ) ) )  <->  ( G  gsumg  ( k  e.  ( A
" { z } )  |->  ( z F k ) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
129128imbi2d 309 . . . . . . . . . . . 12  |-  ( j  =  z  ->  (
( ph  ->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { j } ) ) ) )  <->  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) ) )
130 2ndconst 6437 . . . . . . . . . . . . . . 15  |-  ( j  e.  _V  ->  ( 2nd  |`  ( { j }  X.  ( A
" { j } ) ) ) : ( { j }  X.  ( A " { j } ) ) -1-1-onto-> ( A " {
j } ) )
13185, 130mp1i 12 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) : ( { j }  X.  ( A
" { j } ) ) -1-1-onto-> ( A " {
j } ) )
13240, 41, 43, 84, 93, 110, 131gsumf1o 15523 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) )  o.  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) ) ) )
133 1st2nd2 6387 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
134 xp1st 6377 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( 1st `  x )  e. 
{ j } )
135 elsni 3839 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  x )  e.  { j }  ->  ( 1st `  x
)  =  j )
136134, 135syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( 1st `  x )  =  j )
137136opeq1d 3991 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. j ,  ( 2nd `  x
) >. )
138133, 137eqtrd 2469 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  x  =  <. j ,  ( 2nd `  x )
>. )
139138fveq2d 5733 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( F `  x )  =  ( F `  <. j ,  ( 2nd `  x ) >. )
)
140 df-ov 6085 . . . . . . . . . . . . . . . . 17  |-  ( j F ( 2nd `  x
) )  =  ( F `  <. j ,  ( 2nd `  x
) >. )
141139, 140syl6eqr 2487 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( F `  x )  =  ( j F ( 2nd `  x
) ) )
142141mpteq2ia 4292 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  |->  ( F `
 x ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( j F ( 2nd `  x
) ) )
14349feqmptd 5780 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
144143reseq1d 5146 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F  |`  ( A  |`  { j } ) )  =  ( ( x  e.  A  |->  ( F `  x
) )  |`  ( A  |`  { j } ) ) )
145 resss 5171 . . . . . . . . . . . . . . . . . 18  |-  ( A  |`  { j } ) 
C_  A
146 resmpt 5192 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  |`  { j } )  C_  A  ->  ( ( x  e.  A  |->  ( F `  x ) )  |`  ( A  |`  { j } ) )  =  ( x  e.  ( A  |`  { j } )  |->  ( F `
 x ) ) )
147145, 146ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  |->  ( F `  x ) )  |`  ( A  |` 
{ j } ) )  =  ( x  e.  ( A  |`  { j } ) 
|->  ( F `  x
) )
148 ressn 5409 . . . . . . . . . . . . . . . . . 18  |-  ( A  |`  { j } )  =  ( { j }  X.  ( A
" { j } ) )
149 mpteq1 4290 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  |`  { j } )  =  ( { j }  X.  ( A " { j } ) )  -> 
( x  e.  ( A  |`  { j } )  |->  ( F `
 x ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( F `  x ) ) )
150148, 149ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( A  |`  { j } ) 
|->  ( F `  x
) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( F `
 x ) )
151147, 150eqtri 2457 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  A  |->  ( F `  x ) )  |`  ( A  |` 
{ j } ) )  =  ( x  e.  ( { j }  X.  ( A
" { j } ) )  |->  ( F `
 x ) )
152144, 151syl6eq 2485 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F  |`  ( A  |`  { j } ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( F `
 x ) ) )
153 xp2nd 6378 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( 2nd `  x )  e.  ( A " {
j } ) )
154153adantl 454 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( { j }  X.  ( A " { j } ) ) )  ->  ( 2nd `  x
)  e.  ( A
" { j } ) )
155 fo2nd 6368 . . . . . . . . . . . . . . . . . . . 20  |-  2nd : _V -onto-> _V
156 fof 5654 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2nd
: _V -onto-> _V  ->  2nd
: _V --> _V )
157155, 156mp1i 12 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  2nd : _V --> _V )
158157feqmptd 5780 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  2nd  =  ( x  e.  _V  |->  ( 2nd `  x ) ) )
159158reseq1d 5146 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) )  =  ( ( x  e.  _V  |->  ( 2nd `  x ) )  |`  ( { j }  X.  ( A " { j } ) ) ) )
160 ssv 3369 . . . . . . . . . . . . . . . . . 18  |-  ( { j }  X.  ( A " { j } ) )  C_  _V
161 resmpt 5192 . . . . . . . . . . . . . . . . . 18  |-  ( ( { j }  X.  ( A " { j } ) )  C_  _V  ->  ( ( x  e.  _V  |->  ( 2nd `  x ) )  |`  ( { j }  X.  ( A " { j } ) ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( 2nd `  x
) ) )
162160, 161ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  _V  |->  ( 2nd `  x ) )  |`  ( {
j }  X.  ( A " { j } ) ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( 2nd `  x ) )
163159, 162syl6eq 2485 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( 2nd `  x
) ) )
164 eqidd 2438 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( k  e.  ( A " { j } )  |->  ( j F k ) )  =  ( k  e.  ( A " {
j } )  |->  ( j F k ) ) )
165 oveq2 6090 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( 2nd `  x
)  ->  ( j F k )  =  ( j F ( 2nd `  x ) ) )
166154, 163, 164, 165fmptco 5902 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) )  o.  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( j F ( 2nd `  x ) ) ) )
167142, 152, 1663eqtr4a 2495 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  |`  ( A  |`  { j } ) )  =  ( ( k  e.  ( A " { j } )  |->  ( j F k ) )  o.  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) ) )
168167oveq2d 6098 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  { j } ) ) )  =  ( G  gsumg  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) )  o.  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) ) ) )
169132, 168eqtr4d 2472 . . . . . . . . . . . 12  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { j } ) ) ) )
170129, 169chvarv 1970 . . . . . . . . . . 11  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { z } ) ) ) )
171170adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { z } ) ) ) )
172171oveq2d 6098 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) ) )  =  ( ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
173124, 172eqtrd 2469 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
17481, 173eqeq12d 2451 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( G  gsumg  ( F  |`  ( A  |`  (
y  u.  { z } ) ) ) )  =  ( G 
gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( ( G  gsumg  ( F  |`  ( A  |`  y ) ) ) ( +g  `  G
) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) )  =  ( ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) ) )
17539, 174syl5ibr 214 . . . . . 6  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( G  gsumg  ( F  |`  ( A  |`  y
) ) )  =  ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  -> 
( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
176175expcom 426 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ph  ->  ( ( G  gsumg  ( F  |`  ( A  |`  y
) ) )  =  ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  -> 
( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
177176a2d 25 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  y
) ) )  =  ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  ->  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
17816, 23, 30, 37, 38, 177findcard2s 7350 . . 3  |-  ( dom  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin  ->  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  =  ( G 
gsumg  ( j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
1793, 178mpcom 35 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  =  ( G 
gsumg  ( j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
180 cnvimass 5225 . . . . . 6  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
181 fdm 5596 . . . . . . 7  |-  ( F : A --> B  ->  dom  F  =  A )
18249, 181syl 16 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
183180, 182syl5sseq 3397 . . . . 5  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  A )
184 gsum2d.r . . . . . . 7  |-  ( ph  ->  Rel  A )
185 relss 4964 . . . . . . 7  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  C_  A  ->  ( Rel  A  ->  Rel  ( `' F "
( _V  \  {  .0.  } ) ) ) )
186183, 184, 185sylc 59 . . . . . 6  |-  ( ph  ->  Rel  ( `' F " ( _V  \  {  .0.  } ) ) )
187 relssdmrn 5391 . . . . . . 7  |-  ( Rel  ( `' F "
( _V  \  {  .0.  } ) )  -> 
( `' F "
( _V  \  {  .0.  } ) )  C_  ( dom  ( `' F " ( _V  \  {  .0.  } ) )  X. 
ran  ( `' F " ( _V  \  {  .0.  } ) ) ) )
188 ssv 3369 . . . . . . . 8  |-  ran  ( `' F " ( _V 
\  {  .0.  }
) )  C_  _V
189 xpss2 4986 . . . . . . . 8  |-  ( ran  ( `' F "
( _V  \  {  .0.  } ) )  C_  _V  ->  ( dom  ( `' F " ( _V 
\  {  .0.  }
) )  X.  ran  ( `' F " ( _V 
\  {  .0.  }
) ) )  C_  ( dom  ( `' F " ( _V  \  {  .0.  } ) )  X. 
_V ) )
190188, 189ax-mp 8 . . . . . . 7  |-  ( dom  ( `' F "
( _V  \  {  .0.  } ) )  X. 
ran  ( `' F " ( _V  \  {  .0.  } ) ) ) 
C_  ( dom  ( `' F " ( _V 
\  {  .0.  }
) )  X.  _V )
191187, 190syl6ss 3361 . . . . . 6  |-  ( Rel  ( `' F "
( _V  \  {  .0.  } ) )  -> 
( `' F "
( _V  \  {  .0.  } ) )  C_  ( dom  ( `' F " ( _V  \  {  .0.  } ) )  X. 
_V ) )
192186, 191syl 16 . . . . 5  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( dom  ( `' F " ( _V  \  {  .0.  } ) )  X. 
_V ) )
193183, 192ssind 3566 . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( A  i^i  ( dom  ( `' F "
( _V  \  {  .0.  } ) )  X. 
_V ) ) )
194 df-res 4891 . . . 4  |-  ( A  |`  dom  ( `' F " ( _V  \  {  .0.  } ) ) )  =  ( A  i^i  ( dom  ( `' F " ( _V  \  {  .0.  } ) )  X. 
_V ) )
195193, 194syl6sseqr 3396 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( A  |`  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
19640, 41, 43, 45, 49, 195, 1gsumres 15521 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  =  ( G 
gsumg  F ) )
197 dmss 5070 . . . . . . 7  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  C_  A  ->  dom  ( `' F " ( _V  \  {  .0.  } ) )  C_  dom  A )
198183, 197syl 16 . . . . . 6  |-  ( ph  ->  dom  ( `' F " ( _V  \  {  .0.  } ) )  C_  dom  A )
199 gsum2d.s . . . . . 6  |-  ( ph  ->  dom  A  C_  D
)
200198, 199sstrd 3359 . . . . 5  |-  ( ph  ->  dom  ( `' F " ( _V  \  {  .0.  } ) )  C_  D )
201 resmpt 5192 . . . . 5  |-  ( dom  ( `' F "
( _V  \  {  .0.  } ) )  C_  D  ->  ( ( j  e.  D  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  |`  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )  =  ( j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
202200, 201syl 16 . . . 4  |-  ( ph  ->  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  |`  dom  ( `' F " ( _V  \  {  .0.  } ) ) )  =  ( j  e. 
dom  ( `' F " ( _V  \  {  .0.  } ) )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
203202oveq2d 6098 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  |`  dom  ( `' F " ( _V  \  {  .0.  } ) ) ) )  =  ( G 
gsumg  ( j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
204 gsum2d.d . . . 4  |-  ( ph  ->  D  e.  W )
205111adantr 453 . . . . 5  |-  ( (
ph  /\  j  e.  D )  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B )
206 eqid 2437 . . . . 5  |-  ( j  e.  D  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )
207205, 206fmptd 5894 . . . 4  |-  ( ph  ->  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) : D --> B )
20896ad2antll 711 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )  /\  k  e.  ( A " { j } ) ) )  ->  <. j ,  k >.  e.  A
)
209 eldifn 3471 . . . . . . . . . . . . 13  |-  ( j  e.  ( D  \  dom  ( `' F "
( _V  \  {  .0.  } ) ) )  ->  -.  j  e.  dom  ( `' F "
( _V  \  {  .0.  } ) ) )
210209ad2antrl 710 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )  /\  k  e.  ( A " { j } ) ) )  ->  -.  j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )
21185, 86opeldm 5074 . . . . . . . . . . . 12  |-  ( <.
j ,  k >.  e.  ( `' F "
( _V  \  {  .0.  } ) )  -> 
j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )
212210, 211nsyl 116 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )  /\  k  e.  ( A " { j } ) ) )  ->  -.  <.
j ,  k >.  e.  ( `' F "
( _V  \  {  .0.  } ) ) )
213208, 212eldifd 3332 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )  /\  k  e.  ( A " { j } ) ) )  ->  <. j ,  k >.  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
214213, 106syldan 458 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )  /\  k  e.  ( A " { j } ) ) )  ->  (
j F k )  =  .0.  )
215214anassrs 631 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  /\  k  e.  ( A " { j } ) )  -> 
( j F k )  =  .0.  )
216215mpteq2dva 4296 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( k  e.  ( A " {
j } )  |->  ( j F k ) )  =  ( k  e.  ( A " { j } ) 
|->  .0.  ) )
217216oveq2d 6098 . . . . . 6  |-  ( (
ph  /\  j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) )  =  ( G  gsumg  ( k  e.  ( A " { j } )  |->  .0.  )
) )
218 cmnmnd 15428 . . . . . . . . 9  |-  ( G  e. CMnd  ->  G  e.  Mnd )
21943, 218syl 16 . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
22041gsumz 14782 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( A " { j } )  e.  _V )  ->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  .0.  ) )  =  .0.  )
221219, 84, 220syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  .0.  )
)  =  .0.  )
222221adantr 453 . . . . . 6  |-  ( (
ph  /\  j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  .0.  ) )  =  .0.  )
223217, 222eqtrd 2469 . . . . 5  |-  ( (
ph  /\  j  e.  ( D  \  dom  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) )  =  .0.  )
224223suppss2 6301 . . . 4  |-  ( ph  ->  ( `' ( j  e.  D  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) " ( _V  \  {  .0.  }
) )  C_  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )
225 ssfi 7330 . . . . 5  |-  ( ( dom  ( `' F " ( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) " ( _V  \  {  .0.  }
) )  C_  dom  ( `' F " ( _V 
\  {  .0.  }
) ) )  -> 
( `' ( j  e.  D  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) " ( _V  \  {  .0.  }
) )  e.  Fin )
2263, 224, 225syl2anc 644 . . . 4  |-  ( ph  ->  ( `' ( j  e.  D  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) " ( _V  \  {  .0.  }
) )  e.  Fin )
22740, 41, 43, 204, 207, 224, 226gsumres 15521 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  |`  dom  ( `' F " ( _V  \  {  .0.  } ) ) ) )  =  ( G 
gsumg  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
228203, 227eqtr3d 2471 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  dom  ( `' F " ( _V 
\  {  .0.  }
) )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
229179, 196, 2283eqtr3d 2477 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  D  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2957    \ cdif 3318    u. cun 3319    i^i cin 3320    C_ wss 3321   (/)c0 3629   {csn 3815   <.cop 3818    e. cmpt 4267    X. cxp 4877   `'ccnv 4878   dom cdm 4879   ran crn 4880    |` cres 4881   "cima 4882    o. ccom 4883   Rel wrel 4884   -->wf 5451   -onto->wfo 5453   -1-1-onto->wf1o 5454   ` cfv 5455  (class class class)co 6082   1stc1st 6348   2ndc2nd 6349   Fincfn 7110   Basecbs 13470   +g cplusg 13530   0gc0g 13724    gsumg cgsu 13725   Mndcmnd 14685  CMndccmn 15413
This theorem is referenced by:  gsum2d2  15549  gsumxp  15551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6306  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-oi 7480  df-card 7827  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-2 10059  df-n0 10223  df-z 10284  df-uz 10490  df-fz 11045  df-fzo 11137  df-seq 11325  df-hash 11620  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-ress 13477  df-plusg 13543  df-0g 13728  df-gsum 13729  df-mre 13812  df-mrc 13813  df-acs 13815  df-mnd 14691  df-submnd 14740  df-mulg 14816  df-cntz 15117  df-cmn 15415
  Copyright terms: Public domain W3C validator