MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiag Unicode version

Theorem gsumbagdiag 16138
Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 12256 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrbagconf1o.1  |-  S  =  { y  e.  D  |  y  o R  <_  F }
gsumbagdiag.i  |-  ( ph  ->  I  e.  V )
gsumbagdiag.f  |-  ( ph  ->  F  e.  D )
gsumbagdiag.b  |-  B  =  ( Base `  G
)
gsumbagdiag.g  |-  ( ph  ->  G  e. CMnd )
gsumbagdiag.x  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  X  e.  B )
Assertion
Ref Expression
gsumbagdiag  |-  ( ph  ->  ( G  gsumg  ( j  e.  S ,  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( k  e.  S ,  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  k
) }  |->  X ) ) )
Distinct variable groups:    f, j,
k, x, y, F   
f, G, j, k, x, y    x, V, y    f, I, x, y    ph, j, k    S, j, k, x    B, j, k    D, j, k, x, y    f, X, x, y
Allowed substitution hints:    ph( x, y, f)    B( x, y, f)    D( f)    S( y, f)    I( j, k)    V( f, j, k)    X( j, k)

Proof of Theorem gsumbagdiag
StepHypRef Expression
1 gsumbagdiag.b . 2  |-  B  =  ( Base `  G
)
2 eqid 2296 . 2  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 gsumbagdiag.g . 2  |-  ( ph  ->  G  e. CMnd )
4 psrbagconf1o.1 . . 3  |-  S  =  { y  e.  D  |  y  o R  <_  F }
5 gsumbagdiag.i . . . 4  |-  ( ph  ->  I  e.  V )
6 gsumbagdiag.f . . . 4  |-  ( ph  ->  F  e.  D )
7 psrbag.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
87psrbaglefi 16134 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D )  ->  { y  e.  D  |  y  o R  <_  F }  e.  Fin )
95, 6, 8syl2anc 642 . . 3  |-  ( ph  ->  { y  e.  D  |  y  o R  <_  F }  e.  Fin )
104, 9syl5eqel 2380 . 2  |-  ( ph  ->  S  e.  Fin )
11 ovex 5899 . . . . . 6  |-  ( NN0 
^m  I )  e. 
_V
1211rabex 4181 . . . . 5  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
137, 12eqeltri 2366 . . . 4  |-  D  e. 
_V
1413rabex 4181 . . 3  |-  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  e.  _V
1514a1i 10 . 2  |-  ( (
ph  /\  j  e.  S )  ->  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  e.  _V )
16 gsumbagdiag.x . 2  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  X  e.  B )
17 xpfi 7144 . . 3  |-  ( ( S  e.  Fin  /\  S  e.  Fin )  ->  ( S  X.  S
)  e.  Fin )
1810, 10, 17syl2anc 642 . 2  |-  ( ph  ->  ( S  X.  S
)  e.  Fin )
19 simprl 732 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  j  e.  S )
207, 4, 5, 6gsumbagdiaglem 16137 . . . . . 6  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  (
k  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  k
) } ) )
2120simpld 445 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  k  e.  S )
22 brxp 4736 . . . . 5  |-  ( j ( S  X.  S
) k  <->  ( j  e.  S  /\  k  e.  S ) )
2319, 21, 22sylanbrc 645 . . . 4  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  j
( S  X.  S
) k )
2423pm2.24d 135 . . 3  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } ) )  ->  ( -.  j ( S  X.  S ) k  ->  X  =  ( 0g `  G ) ) )
2524impr 602 . 2  |-  ( (
ph  /\  ( (
j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } )  /\  -.  j ( S  X.  S ) k ) )  ->  X  =  ( 0g `  G ) )
267, 4, 5, 6gsumbagdiaglem 16137 . . 3  |-  ( (
ph  /\  ( k  e.  S  /\  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  k ) } ) )  ->  (
j  e.  S  /\  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) } ) )
2720, 26impbida 805 . 2  |-  ( ph  ->  ( ( j  e.  S  /\  k  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  j ) } )  <->  ( k  e.  S  /\  j  e. 
{ x  e.  D  |  x  o R  <_  ( F  o F  -  k ) } ) ) )
281, 2, 3, 10, 15, 16, 18, 25, 10, 27gsumcom2 15242 1  |-  ( ph  ->  ( G  gsumg  ( j  e.  S ,  k  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( k  e.  S ,  j  e.  { x  e.  D  |  x  o R  <_  ( F  o F  -  k
) }  |->  X ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {crab 2560   _Vcvv 2801   class class class wbr 4039    X. cxp 4703   `'ccnv 4704   "cima 4708   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876    o Fcof 6092    o Rcofr 6093    ^m cmap 6788   Fincfn 6879    <_ cle 8884    - cmin 9053   NNcn 9762   NN0cn0 9981   Basecbs 13164   0gc0g 13416    gsumg cgsu 13417  CMndccmn 15105
This theorem is referenced by:  psrass1lem  16139
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-0g 13420  df-gsum 13421  df-mnd 14383  df-cntz 14809  df-cmn 15107
  Copyright terms: Public domain W3C validator