MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumccat Unicode version

Theorem gsumccat 14464
Description: Homomorphic property of composites. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
gsumwcl.b  |-  B  =  ( Base `  G
)
gsumccat.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
gsumccat  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) ) )

Proof of Theorem gsumccat
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5865 . . . 4  |-  ( W  =  (/)  ->  ( W concat  X )  =  (
(/) concat  X ) )
21oveq2d 5874 . . 3  |-  ( W  =  (/)  ->  ( G 
gsumg  ( W concat  X ) )  =  ( G  gsumg  ( (/) concat  X ) ) )
3 oveq2 5866 . . . . 5  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( G  gsumg  (/) ) )
4 eqid 2283 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
54gsum0 14457 . . . . 5  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
63, 5syl6eq 2331 . . . 4  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( 0g `  G ) )
76oveq1d 5873 . . 3  |-  ( W  =  (/)  ->  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) )  =  ( ( 0g `  G )  .+  ( G  gsumg  X ) ) )
82, 7eqeq12d 2297 . 2  |-  ( W  =  (/)  ->  ( ( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) )  <->  ( G  gsumg  (
(/) concat  X ) )  =  ( ( 0g `  G )  .+  ( G  gsumg  X ) ) ) )
9 oveq2 5866 . . . . 5  |-  ( X  =  (/)  ->  ( W concat  X )  =  ( W concat  (/) ) )
109oveq2d 5874 . . . 4  |-  ( X  =  (/)  ->  ( G 
gsumg  ( W concat  X ) )  =  ( G  gsumg  ( W concat  (/) ) ) )
11 oveq2 5866 . . . . . 6  |-  ( X  =  (/)  ->  ( G 
gsumg  X )  =  ( G  gsumg  (/) ) )
1211, 5syl6eq 2331 . . . . 5  |-  ( X  =  (/)  ->  ( G 
gsumg  X )  =  ( 0g `  G ) )
1312oveq2d 5874 . . . 4  |-  ( X  =  (/)  ->  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) )  =  ( ( G  gsumg  W ) 
.+  ( 0g `  G ) ) )
1410, 13eqeq12d 2297 . . 3  |-  ( X  =  (/)  ->  ( ( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) )  <->  ( G  gsumg  ( W concat  (/) ) )  =  ( ( G  gsumg  W ) 
.+  ( 0g `  G ) ) ) )
15 gsumwcl.b . . . . . 6  |-  B  =  ( Base `  G
)
16 gsumccat.p . . . . . 6  |-  .+  =  ( +g  `  G )
17 simpl1 958 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  G  e.  Mnd )
18 lennncl 11422 . . . . . . . . . . 11  |-  ( ( W  e. Word  B  /\  W  =/=  (/) )  ->  ( # `
 W )  e.  NN )
19183ad2antl2 1118 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( # `  W )  e.  NN )
2019adantrr 697 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  W )  e.  NN )
21 lennncl 11422 . . . . . . . . . . 11  |-  ( ( X  e. Word  B  /\  X  =/=  (/) )  ->  ( # `
 X )  e.  NN )
22213ad2antl3 1119 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  X  =/=  (/) )  -> 
( # `  X )  e.  NN )
2322adantrl 696 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  X )  e.  NN )
2420, 23nnaddcld 9792 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  +  ( # `  X ) )  e.  NN )
25 nnm1nn0 10005 . . . . . . . 8  |-  ( ( ( # `  W
)  +  ( # `  X ) )  e.  NN  ->  ( (
( # `  W )  +  ( # `  X
) )  -  1 )  e.  NN0 )
2624, 25syl 15 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  e.  NN0 )
27 nn0uz 10262 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2826, 27syl6eleq 2373 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  e.  ( ZZ>= `  0
) )
29 simpl2 959 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  W  e. Word  B )
30 simpl3 960 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  X  e. Word  B )
31 ccatcl 11429 . . . . . . . . 9  |-  ( ( W  e. Word  B  /\  X  e. Word  B )  ->  ( W concat  X )  e. Word  B )
3229, 30, 31syl2anc 642 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( W concat  X )  e. Word  B )
33 wrdf 11419 . . . . . . . 8  |-  ( ( W concat  X )  e. Word  B  ->  ( W concat  X
) : ( 0..^ ( # `  ( W concat  X ) ) ) --> B )
3432, 33syl 15 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( W concat  X ) : ( 0..^ (
# `  ( W concat  X ) ) ) --> B )
35 ccatlen 11430 . . . . . . . . . . 11  |-  ( ( W  e. Word  B  /\  X  e. Word  B )  ->  ( # `  ( W concat  X ) )  =  ( ( # `  W
)  +  ( # `  X ) ) )
3629, 30, 35syl2anc 642 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  ( W concat  X ) )  =  ( ( # `  W
)  +  ( # `  X ) ) )
3736oveq2d 5874 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( # `  ( W concat  X ) ) )  =  ( 0..^ ( ( # `  W )  +  (
# `  X )
) ) )
3820nnzd 10116 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  W )  e.  ZZ )
3923nnzd 10116 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  X )  e.  ZZ )
4038, 39zaddcld 10121 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  +  ( # `  X ) )  e.  ZZ )
41 fzoval 10876 . . . . . . . . . 10  |-  ( ( ( # `  W
)  +  ( # `  X ) )  e.  ZZ  ->  ( 0..^ ( ( # `  W
)  +  ( # `  X ) ) )  =  ( 0 ... ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) ) )
4240, 41syl 15 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( (
# `  W )  +  ( # `  X
) ) )  =  ( 0 ... (
( ( # `  W
)  +  ( # `  X ) )  - 
1 ) ) )
4337, 42eqtrd 2315 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( # `  ( W concat  X ) ) )  =  ( 0 ... ( ( ( # `  W
)  +  ( # `  X ) )  - 
1 ) ) )
4443feq2d 5380 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( W concat  X
) : ( 0..^ ( # `  ( W concat  X ) ) ) --> B  <->  ( W concat  X
) : ( 0 ... ( ( (
# `  W )  +  ( # `  X
) )  -  1 ) ) --> B ) )
4534, 44mpbid 201 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( W concat  X ) : ( 0 ... ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) ) --> B )
4615, 16, 17, 28, 45gsumval2 14460 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( G  gsumg  ( W concat  X ) )  =  (  seq  0 (  .+  , 
( W concat  X )
) `  ( (
( # `  W )  +  ( # `  X
) )  -  1 ) ) )
47 nnm1nn0 10005 . . . . . . . . . 10  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  NN0 )
4820, 47syl 15 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  -  1 )  e.  NN0 )
4948, 27syl6eleq 2373 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  -  1 )  e.  ( ZZ>= `  0
) )
50 wrdf 11419 . . . . . . . . . 10  |-  ( W  e. Word  B  ->  W : ( 0..^ (
# `  W )
) --> B )
5129, 50syl 15 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  W : ( 0..^ (
# `  W )
) --> B )
52 fzoval 10876 . . . . . . . . . . 11  |-  ( (
# `  W )  e.  ZZ  ->  ( 0..^ ( # `  W
) )  =  ( 0 ... ( (
# `  W )  -  1 ) ) )
5338, 52syl 15 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( # `  W ) )  =  ( 0 ... (
( # `  W )  -  1 ) ) )
5453feq2d 5380 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( W : ( 0..^ ( # `  W
) ) --> B  <->  W :
( 0 ... (
( # `  W )  -  1 ) ) --> B ) )
5551, 54mpbid 201 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B )
5615, 16, 17, 49, 55gsumval2 14460 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( G  gsumg  W )  =  (  seq  0 (  .+  ,  W ) `  (
( # `  W )  -  1 ) ) )
57 nnm1nn0 10005 . . . . . . . . . 10  |-  ( (
# `  X )  e.  NN  ->  ( ( # `
 X )  - 
1 )  e.  NN0 )
5823, 57syl 15 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  X
)  -  1 )  e.  NN0 )
5958, 27syl6eleq 2373 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  X
)  -  1 )  e.  ( ZZ>= `  0
) )
60 wrdf 11419 . . . . . . . . . 10  |-  ( X  e. Word  B  ->  X : ( 0..^ (
# `  X )
) --> B )
6130, 60syl 15 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  X : ( 0..^ (
# `  X )
) --> B )
62 fzoval 10876 . . . . . . . . . . 11  |-  ( (
# `  X )  e.  ZZ  ->  ( 0..^ ( # `  X
) )  =  ( 0 ... ( (
# `  X )  -  1 ) ) )
6339, 62syl 15 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( # `  X ) )  =  ( 0 ... (
( # `  X )  -  1 ) ) )
6463feq2d 5380 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( X : ( 0..^ ( # `  X
) ) --> B  <->  X :
( 0 ... (
( # `  X )  -  1 ) ) --> B ) )
6561, 64mpbid 201 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  X : ( 0 ... ( ( # `  X
)  -  1 ) ) --> B )
6615, 16, 17, 59, 65gsumval2 14460 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( G  gsumg  X )  =  (  seq  0 (  .+  ,  X ) `  (
( # `  X )  -  1 ) ) )
6756, 66oveq12d 5876 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( G  gsumg  W ) 
.+  ( G  gsumg  X ) )  =  ( (  seq  0 (  .+  ,  W ) `  (
( # `  W )  -  1 ) ) 
.+  (  seq  0
(  .+  ,  X
) `  ( ( # `
 X )  - 
1 ) ) ) )
6815, 16mndcl 14372 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
69683expb 1152 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
7017, 69sylan 457 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
7115, 16mndass 14373 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
7217, 71sylan 457 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
7320nncnd 9762 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  W )  e.  CC )
7423nncnd 9762 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  X )  e.  CC )
75 ax-1cn 8795 . . . . . . . . . . . 12  |-  1  e.  CC
7675a1i 10 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
1  e.  CC )
7773, 74, 76addsubassd 9177 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  =  ( ( # `  W )  +  ( ( # `  X
)  -  1 ) ) )
78 uzid 10242 . . . . . . . . . . . 12  |-  ( (
# `  W )  e.  ZZ  ->  ( # `  W
)  e.  ( ZZ>= `  ( # `  W ) ) )
7938, 78syl 15 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  W )  e.  ( ZZ>= `  ( # `
 W ) ) )
80 uzaddcl 10275 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  e.  ( ZZ>= `  ( # `  W ) )  /\  ( (
# `  X )  -  1 )  e. 
NN0 )  ->  (
( # `  W )  +  ( ( # `  X )  -  1 ) )  e.  (
ZZ>= `  ( # `  W
) ) )
8179, 58, 80syl2anc 642 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  +  ( (
# `  X )  -  1 ) )  e.  ( ZZ>= `  ( # `
 W ) ) )
8277, 81eqeltrd 2357 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  e.  ( ZZ>= `  ( # `
 W ) ) )
83 npcan 9060 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( # `  W )  -  1 )  +  1 )  =  ( # `  W
) )
8473, 75, 83sylancl 643 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  -  1 )  +  1 )  =  ( # `  W
) )
8584fveq2d 5529 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ZZ>= `  ( (
( # `  W )  -  1 )  +  1 ) )  =  ( ZZ>= `  ( # `  W
) ) )
8682, 85eleqtrrd 2360 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  e.  ( ZZ>= `  (
( ( # `  W
)  -  1 )  +  1 ) ) )
87 ffvelrn 5663 . . . . . . . . 9  |-  ( ( ( W concat  X ) : ( 0 ... ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) ) --> B  /\  x  e.  ( 0 ... (
( ( # `  W
)  +  ( # `  X ) )  - 
1 ) ) )  ->  ( ( W concat  X ) `  x
)  e.  B )
8845, 87sylan 457 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( ( # `  W
)  +  ( # `  X ) )  - 
1 ) ) )  ->  ( ( W concat  X ) `  x
)  e.  B )
8970, 72, 86, 49, 88seqsplit 11079 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  0 ( 
.+  ,  ( W concat  X ) ) `  ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) )  =  ( (  seq  0 (  .+  ,  ( W concat  X
) ) `  (
( # `  W )  -  1 ) ) 
.+  (  seq  (
( ( # `  W
)  -  1 )  +  1 ) ( 
.+  ,  ( W concat  X ) ) `  ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) ) ) )
90 simpll2 995 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  W  e. Word  B )
91 simpll3 996 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  X  e. Word  B )
9253eleq2d 2350 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( x  e.  ( 0..^ ( # `  W
) )  <->  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) ) )
9392biimpar 471 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  x  e.  ( 0..^ ( # `  W
) ) )
94 ccatval1 11431 . . . . . . . . . 10  |-  ( ( W  e. Word  B  /\  X  e. Word  B  /\  x  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( W concat  X ) `  x
)  =  ( W `
 x ) )
9590, 91, 93, 94syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( ( W concat  X ) `  x
)  =  ( W `
 x ) )
9649, 95seqfveq 11070 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  0 ( 
.+  ,  ( W concat  X ) ) `  ( ( # `  W
)  -  1 ) )  =  (  seq  0 (  .+  ,  W ) `  (
( # `  W )  -  1 ) ) )
9773addid2d 9013 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0  +  (
# `  W )
)  =  ( # `  W ) )
9884, 97eqtr4d 2318 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  -  1 )  +  1 )  =  ( 0  +  ( # `  W
) ) )
9998seqeq1d 11052 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  seq  ( ( ( # `  W )  -  1 )  +  1 ) (  .+  ,  ( W concat  X ) )  =  seq  ( 0  +  ( # `  W
) ) (  .+  ,  ( W concat  X
) ) )
10073, 74addcomd 9014 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  +  ( # `  X ) )  =  ( ( # `  X
)  +  ( # `  W ) ) )
101100oveq1d 5873 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  =  ( ( (
# `  X )  +  ( # `  W
) )  -  1 ) )
10274, 73, 76addsubd 9178 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  X )  +  (
# `  W )
)  -  1 )  =  ( ( (
# `  X )  -  1 )  +  ( # `  W
) ) )
103101, 102eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  =  ( ( (
# `  X )  -  1 )  +  ( # `  W
) ) )
10499, 103fveq12d 5531 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  ( (
( # `  W )  -  1 )  +  1 ) (  .+  ,  ( W concat  X
) ) `  (
( ( # `  W
)  +  ( # `  X ) )  - 
1 ) )  =  (  seq  ( 0  +  ( # `  W
) ) (  .+  ,  ( W concat  X
) ) `  (
( ( # `  X
)  -  1 )  +  ( # `  W
) ) ) )
105 simpll2 995 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  W  e. Word  B )
106 simpll3 996 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  X  e. Word  B )
10763eleq2d 2350 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( x  e.  ( 0..^ ( # `  X
) )  <->  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) ) )
108107biimpar 471 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  x  e.  ( 0..^ ( # `  X
) ) )
109 ccatval3 11433 . . . . . . . . . . . 12  |-  ( ( W  e. Word  B  /\  X  e. Word  B  /\  x  e.  ( 0..^ ( # `  X ) ) )  ->  ( ( W concat  X ) `  (
x  +  ( # `  W ) ) )  =  ( X `  x ) )
110105, 106, 108, 109syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  ( ( W concat  X ) `  (
x  +  ( # `  W ) ) )  =  ( X `  x ) )
111110eqcomd 2288 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  ( X `  x )  =  ( ( W concat  X ) `
 ( x  +  ( # `  W ) ) ) )
11259, 38, 111seqshft2 11072 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  0 ( 
.+  ,  X ) `
 ( ( # `  X )  -  1 ) )  =  (  seq  ( 0  +  ( # `  W
) ) (  .+  ,  ( W concat  X
) ) `  (
( ( # `  X
)  -  1 )  +  ( # `  W
) ) ) )
113104, 112eqtr4d 2318 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  ( (
( # `  W )  -  1 )  +  1 ) (  .+  ,  ( W concat  X
) ) `  (
( ( # `  W
)  +  ( # `  X ) )  - 
1 ) )  =  (  seq  0 ( 
.+  ,  X ) `
 ( ( # `  X )  -  1 ) ) )
11496, 113oveq12d 5876 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( (  seq  0
(  .+  ,  ( W concat  X ) ) `  ( ( # `  W
)  -  1 ) )  .+  (  seq  ( ( ( # `  W )  -  1 )  +  1 ) (  .+  ,  ( W concat  X ) ) `
 ( ( (
# `  W )  +  ( # `  X
) )  -  1 ) ) )  =  ( (  seq  0
(  .+  ,  W
) `  ( ( # `
 W )  - 
1 ) )  .+  (  seq  0 (  .+  ,  X ) `  (
( # `  X )  -  1 ) ) ) )
11589, 114eqtrd 2315 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  0 ( 
.+  ,  ( W concat  X ) ) `  ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) )  =  ( (  seq  0 (  .+  ,  W ) `  (
( # `  W )  -  1 ) ) 
.+  (  seq  0
(  .+  ,  X
) `  ( ( # `
 X )  - 
1 ) ) ) )
11667, 115eqtr4d 2318 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( G  gsumg  W ) 
.+  ( G  gsumg  X ) )  =  (  seq  0 (  .+  , 
( W concat  X )
) `  ( (
( # `  W )  +  ( # `  X
) )  -  1 ) ) )
11746, 116eqtr4d 2318 . . . 4  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) ) )
118117anassrs 629 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  W  =/=  (/) )  /\  X  =/=  (/) )  ->  ( G 
gsumg  ( W concat  X ) )  =  ( ( G 
gsumg  W )  .+  ( G  gsumg  X ) ) )
119 simpl2 959 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  ->  W  e. Word  B )
120 ccatrid 11435 . . . . . 6  |-  ( W  e. Word  B  ->  ( W concat 
(/) )  =  W )
121119, 120syl 15 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( W concat  (/) )  =  W )
122121oveq2d 5874 . . . 4  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( G  gsumg  ( W concat  (/) ) )  =  ( G  gsumg  W ) )
123 simpl1 958 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  ->  G  e.  Mnd )
12415gsumwcl 14463 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  W  e. Word  B )  ->  ( G  gsumg  W )  e.  B
)
1251243adant3 975 . . . . . 6  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  W )  e.  B
)
126125adantr 451 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( G  gsumg  W )  e.  B
)
12715, 16, 4mndrid 14394 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( G  gsumg  W )  e.  B
)  ->  ( ( G  gsumg  W )  .+  ( 0g `  G ) )  =  ( G  gsumg  W ) )
128123, 126, 127syl2anc 642 . . . 4  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( G  gsumg  W ) 
.+  ( 0g `  G ) )  =  ( G  gsumg  W ) )
129122, 128eqtr4d 2318 . . 3  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( G  gsumg  ( W concat  (/) ) )  =  ( ( G 
gsumg  W )  .+  ( 0g `  G ) ) )
13014, 118, 129pm2.61ne 2521 . 2  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) ) )
131 ccatlid 11434 . . . . 5  |-  ( X  e. Word  B  ->  ( (/) concat  X )  =  X )
1321313ad2ant3 978 . . . 4  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( (/) concat  X )  =  X )
133132oveq2d 5874 . . 3  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  ( (/) concat  X ) )  =  ( G  gsumg  X ) )
134 simp1 955 . . . 4  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  G  e.  Mnd )
13515gsumwcl 14463 . . . . 5  |-  ( ( G  e.  Mnd  /\  X  e. Word  B )  ->  ( G  gsumg  X )  e.  B
)
1361353adant2 974 . . . 4  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  X )  e.  B
)
13715, 16, 4mndlid 14393 . . . 4  |-  ( ( G  e.  Mnd  /\  ( G  gsumg  X )  e.  B
)  ->  ( ( 0g `  G )  .+  ( G  gsumg  X ) )  =  ( G  gsumg  X ) )
138134, 136, 137syl2anc 642 . . 3  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  (
( 0g `  G
)  .+  ( G  gsumg  X ) )  =  ( G  gsumg  X ) )
139133, 138eqtr4d 2318 . 2  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  ( (/) concat  X ) )  =  ( ( 0g
`  G )  .+  ( G  gsumg  X ) ) )
1408, 130, 139pm2.61ne 2521 1  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   (/)c0 3455   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    - cmin 9037   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782  ..^cfzo 10870    seq cseq 11046   #chash 11337  Word cword 11403   concat cconcat 11404   Basecbs 13148   +g cplusg 13208   0gc0g 13400    gsumg cgsu 13401   Mndcmnd 14361
This theorem is referenced by:  gsumws2  14465  gsumspl  14466  gsumwspan  14468  frmdgsum  14484  frmdup1  14486  gsumwrev  14839  frgpuplem  15081  frgpup1  15084  psgnunilem5  27417  psgnuni  27422  psgnghm  27437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-word 11409  df-concat 11410  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mnd 14367  df-submnd 14416
  Copyright terms: Public domain W3C validator