MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumccat Structured version   Unicode version

Theorem gsumccat 14779
Description: Homomorphic property of composites. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
gsumwcl.b  |-  B  =  ( Base `  G
)
gsumccat.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
gsumccat  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) ) )

Proof of Theorem gsumccat
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6080 . . . 4  |-  ( W  =  (/)  ->  ( W concat  X )  =  (
(/) concat  X ) )
21oveq2d 6089 . . 3  |-  ( W  =  (/)  ->  ( G 
gsumg  ( W concat  X ) )  =  ( G  gsumg  ( (/) concat  X ) ) )
3 oveq2 6081 . . . . 5  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( G  gsumg  (/) ) )
4 eqid 2435 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
54gsum0 14772 . . . . 5  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
63, 5syl6eq 2483 . . . 4  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( 0g `  G ) )
76oveq1d 6088 . . 3  |-  ( W  =  (/)  ->  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) )  =  ( ( 0g `  G )  .+  ( G  gsumg  X ) ) )
82, 7eqeq12d 2449 . 2  |-  ( W  =  (/)  ->  ( ( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) )  <->  ( G  gsumg  (
(/) concat  X ) )  =  ( ( 0g `  G )  .+  ( G  gsumg  X ) ) ) )
9 oveq2 6081 . . . . 5  |-  ( X  =  (/)  ->  ( W concat  X )  =  ( W concat  (/) ) )
109oveq2d 6089 . . . 4  |-  ( X  =  (/)  ->  ( G 
gsumg  ( W concat  X ) )  =  ( G  gsumg  ( W concat  (/) ) ) )
11 oveq2 6081 . . . . . 6  |-  ( X  =  (/)  ->  ( G 
gsumg  X )  =  ( G  gsumg  (/) ) )
1211, 5syl6eq 2483 . . . . 5  |-  ( X  =  (/)  ->  ( G 
gsumg  X )  =  ( 0g `  G ) )
1312oveq2d 6089 . . . 4  |-  ( X  =  (/)  ->  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) )  =  ( ( G  gsumg  W ) 
.+  ( 0g `  G ) ) )
1410, 13eqeq12d 2449 . . 3  |-  ( X  =  (/)  ->  ( ( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) )  <->  ( G  gsumg  ( W concat  (/) ) )  =  ( ( G  gsumg  W ) 
.+  ( 0g `  G ) ) ) )
15 gsumwcl.b . . . . . 6  |-  B  =  ( Base `  G
)
16 gsumccat.p . . . . . 6  |-  .+  =  ( +g  `  G )
17 simpl1 960 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  G  e.  Mnd )
18 lennncl 11728 . . . . . . . . . . 11  |-  ( ( W  e. Word  B  /\  W  =/=  (/) )  ->  ( # `
 W )  e.  NN )
19183ad2antl2 1120 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( # `  W )  e.  NN )
2019adantrr 698 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  W )  e.  NN )
21 lennncl 11728 . . . . . . . . . . 11  |-  ( ( X  e. Word  B  /\  X  =/=  (/) )  ->  ( # `
 X )  e.  NN )
22213ad2antl3 1121 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  X  =/=  (/) )  -> 
( # `  X )  e.  NN )
2322adantrl 697 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  X )  e.  NN )
2420, 23nnaddcld 10038 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  +  ( # `  X ) )  e.  NN )
25 nnm1nn0 10253 . . . . . . . 8  |-  ( ( ( # `  W
)  +  ( # `  X ) )  e.  NN  ->  ( (
( # `  W )  +  ( # `  X
) )  -  1 )  e.  NN0 )
2624, 25syl 16 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  e.  NN0 )
27 nn0uz 10512 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2826, 27syl6eleq 2525 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  e.  ( ZZ>= `  0
) )
29 simpl2 961 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  W  e. Word  B )
30 simpl3 962 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  X  e. Word  B )
31 ccatcl 11735 . . . . . . . . 9  |-  ( ( W  e. Word  B  /\  X  e. Word  B )  ->  ( W concat  X )  e. Word  B )
3229, 30, 31syl2anc 643 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( W concat  X )  e. Word  B )
33 wrdf 11725 . . . . . . . 8  |-  ( ( W concat  X )  e. Word  B  ->  ( W concat  X
) : ( 0..^ ( # `  ( W concat  X ) ) ) --> B )
3432, 33syl 16 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( W concat  X ) : ( 0..^ (
# `  ( W concat  X ) ) ) --> B )
35 ccatlen 11736 . . . . . . . . . . 11  |-  ( ( W  e. Word  B  /\  X  e. Word  B )  ->  ( # `  ( W concat  X ) )  =  ( ( # `  W
)  +  ( # `  X ) ) )
3629, 30, 35syl2anc 643 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  ( W concat  X ) )  =  ( ( # `  W
)  +  ( # `  X ) ) )
3736oveq2d 6089 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( # `  ( W concat  X ) ) )  =  ( 0..^ ( ( # `  W )  +  (
# `  X )
) ) )
3820nnzd 10366 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  W )  e.  ZZ )
3923nnzd 10366 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  X )  e.  ZZ )
4038, 39zaddcld 10371 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  +  ( # `  X ) )  e.  ZZ )
41 fzoval 11133 . . . . . . . . . 10  |-  ( ( ( # `  W
)  +  ( # `  X ) )  e.  ZZ  ->  ( 0..^ ( ( # `  W
)  +  ( # `  X ) ) )  =  ( 0 ... ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) ) )
4240, 41syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( (
# `  W )  +  ( # `  X
) ) )  =  ( 0 ... (
( ( # `  W
)  +  ( # `  X ) )  - 
1 ) ) )
4337, 42eqtrd 2467 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( # `  ( W concat  X ) ) )  =  ( 0 ... ( ( ( # `  W
)  +  ( # `  X ) )  - 
1 ) ) )
4443feq2d 5573 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( W concat  X
) : ( 0..^ ( # `  ( W concat  X ) ) ) --> B  <->  ( W concat  X
) : ( 0 ... ( ( (
# `  W )  +  ( # `  X
) )  -  1 ) ) --> B ) )
4534, 44mpbid 202 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( W concat  X ) : ( 0 ... ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) ) --> B )
4615, 16, 17, 28, 45gsumval2 14775 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( G  gsumg  ( W concat  X ) )  =  (  seq  0 (  .+  , 
( W concat  X )
) `  ( (
( # `  W )  +  ( # `  X
) )  -  1 ) ) )
47 nnm1nn0 10253 . . . . . . . . . 10  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  NN0 )
4820, 47syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  -  1 )  e.  NN0 )
4948, 27syl6eleq 2525 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  -  1 )  e.  ( ZZ>= `  0
) )
50 wrdf 11725 . . . . . . . . . 10  |-  ( W  e. Word  B  ->  W : ( 0..^ (
# `  W )
) --> B )
5129, 50syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  W : ( 0..^ (
# `  W )
) --> B )
52 fzoval 11133 . . . . . . . . . . 11  |-  ( (
# `  W )  e.  ZZ  ->  ( 0..^ ( # `  W
) )  =  ( 0 ... ( (
# `  W )  -  1 ) ) )
5338, 52syl 16 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( # `  W ) )  =  ( 0 ... (
( # `  W )  -  1 ) ) )
5453feq2d 5573 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( W : ( 0..^ ( # `  W
) ) --> B  <->  W :
( 0 ... (
( # `  W )  -  1 ) ) --> B ) )
5551, 54mpbid 202 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B )
5615, 16, 17, 49, 55gsumval2 14775 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( G  gsumg  W )  =  (  seq  0 (  .+  ,  W ) `  (
( # `  W )  -  1 ) ) )
57 nnm1nn0 10253 . . . . . . . . . 10  |-  ( (
# `  X )  e.  NN  ->  ( ( # `
 X )  - 
1 )  e.  NN0 )
5823, 57syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  X
)  -  1 )  e.  NN0 )
5958, 27syl6eleq 2525 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  X
)  -  1 )  e.  ( ZZ>= `  0
) )
60 wrdf 11725 . . . . . . . . . 10  |-  ( X  e. Word  B  ->  X : ( 0..^ (
# `  X )
) --> B )
6130, 60syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  X : ( 0..^ (
# `  X )
) --> B )
62 fzoval 11133 . . . . . . . . . . 11  |-  ( (
# `  X )  e.  ZZ  ->  ( 0..^ ( # `  X
) )  =  ( 0 ... ( (
# `  X )  -  1 ) ) )
6339, 62syl 16 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0..^ ( # `  X ) )  =  ( 0 ... (
( # `  X )  -  1 ) ) )
6463feq2d 5573 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( X : ( 0..^ ( # `  X
) ) --> B  <->  X :
( 0 ... (
( # `  X )  -  1 ) ) --> B ) )
6561, 64mpbid 202 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  X : ( 0 ... ( ( # `  X
)  -  1 ) ) --> B )
6615, 16, 17, 59, 65gsumval2 14775 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( G  gsumg  X )  =  (  seq  0 (  .+  ,  X ) `  (
( # `  X )  -  1 ) ) )
6756, 66oveq12d 6091 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( G  gsumg  W ) 
.+  ( G  gsumg  X ) )  =  ( (  seq  0 (  .+  ,  W ) `  (
( # `  W )  -  1 ) ) 
.+  (  seq  0
(  .+  ,  X
) `  ( ( # `
 X )  - 
1 ) ) ) )
6815, 16mndcl 14687 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
69683expb 1154 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
7017, 69sylan 458 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
7115, 16mndass 14688 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
7217, 71sylan 458 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
73 uzid 10492 . . . . . . . . . . 11  |-  ( (
# `  W )  e.  ZZ  ->  ( # `  W
)  e.  ( ZZ>= `  ( # `  W ) ) )
7438, 73syl 16 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  W )  e.  ( ZZ>= `  ( # `
 W ) ) )
75 uzaddcl 10525 . . . . . . . . . 10  |-  ( ( ( # `  W
)  e.  ( ZZ>= `  ( # `  W ) )  /\  ( (
# `  X )  -  1 )  e. 
NN0 )  ->  (
( # `  W )  +  ( ( # `  X )  -  1 ) )  e.  (
ZZ>= `  ( # `  W
) ) )
7674, 58, 75syl2anc 643 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  +  ( (
# `  X )  -  1 ) )  e.  ( ZZ>= `  ( # `
 W ) ) )
7720nncnd 10008 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  W )  e.  CC )
7823nncnd 10008 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( # `  X )  e.  CC )
79 ax-1cn 9040 . . . . . . . . . . 11  |-  1  e.  CC
8079a1i 11 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
1  e.  CC )
8177, 78, 80addsubassd 9423 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  =  ( ( # `  W )  +  ( ( # `  X
)  -  1 ) ) )
82 npcan 9306 . . . . . . . . . . 11  |-  ( ( ( # `  W
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( # `  W )  -  1 )  +  1 )  =  ( # `  W
) )
8377, 79, 82sylancl 644 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  -  1 )  +  1 )  =  ( # `  W
) )
8483fveq2d 5724 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ZZ>= `  ( (
( # `  W )  -  1 )  +  1 ) )  =  ( ZZ>= `  ( # `  W
) ) )
8576, 81, 843eltr4d 2516 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  e.  ( ZZ>= `  (
( ( # `  W
)  -  1 )  +  1 ) ) )
8645ffvelrnda 5862 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( ( # `  W
)  +  ( # `  X ) )  - 
1 ) ) )  ->  ( ( W concat  X ) `  x
)  e.  B )
8770, 72, 85, 49, 86seqsplit 11348 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  0 ( 
.+  ,  ( W concat  X ) ) `  ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) )  =  ( (  seq  0 (  .+  ,  ( W concat  X
) ) `  (
( # `  W )  -  1 ) ) 
.+  (  seq  (
( ( # `  W
)  -  1 )  +  1 ) ( 
.+  ,  ( W concat  X ) ) `  ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) ) ) )
88 simpll2 997 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  W  e. Word  B )
89 simpll3 998 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  X  e. Word  B )
9053eleq2d 2502 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( x  e.  ( 0..^ ( # `  W
) )  <->  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) ) )
9190biimpar 472 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  x  e.  ( 0..^ ( # `  W
) ) )
92 ccatval1 11737 . . . . . . . . . 10  |-  ( ( W  e. Word  B  /\  X  e. Word  B  /\  x  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( W concat  X ) `  x
)  =  ( W `
 x ) )
9388, 89, 91, 92syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( ( W concat  X ) `  x
)  =  ( W `
 x ) )
9449, 93seqfveq 11339 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  0 ( 
.+  ,  ( W concat  X ) ) `  ( ( # `  W
)  -  1 ) )  =  (  seq  0 (  .+  ,  W ) `  (
( # `  W )  -  1 ) ) )
9577addid2d 9259 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( 0  +  (
# `  W )
)  =  ( # `  W ) )
9683, 95eqtr4d 2470 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  -  1 )  +  1 )  =  ( 0  +  ( # `  W
) ) )
9796seqeq1d 11321 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  ->  seq  ( ( ( # `  W )  -  1 )  +  1 ) (  .+  ,  ( W concat  X ) )  =  seq  ( 0  +  ( # `  W
) ) (  .+  ,  ( W concat  X
) ) )
9877, 78addcomd 9260 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( # `  W
)  +  ( # `  X ) )  =  ( ( # `  X
)  +  ( # `  W ) ) )
9998oveq1d 6088 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  =  ( ( (
# `  X )  +  ( # `  W
) )  -  1 ) )
10078, 77, 80addsubd 9424 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  X )  +  (
# `  W )
)  -  1 )  =  ( ( (
# `  X )  -  1 )  +  ( # `  W
) ) )
10199, 100eqtrd 2467 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( ( # `  W )  +  (
# `  X )
)  -  1 )  =  ( ( (
# `  X )  -  1 )  +  ( # `  W
) ) )
10297, 101fveq12d 5726 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  ( (
( # `  W )  -  1 )  +  1 ) (  .+  ,  ( W concat  X
) ) `  (
( ( # `  W
)  +  ( # `  X ) )  - 
1 ) )  =  (  seq  ( 0  +  ( # `  W
) ) (  .+  ,  ( W concat  X
) ) `  (
( ( # `  X
)  -  1 )  +  ( # `  W
) ) ) )
103 simpll2 997 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  W  e. Word  B )
104 simpll3 998 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  X  e. Word  B )
10563eleq2d 2502 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( x  e.  ( 0..^ ( # `  X
) )  <->  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) ) )
106105biimpar 472 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  x  e.  ( 0..^ ( # `  X
) ) )
107 ccatval3 11739 . . . . . . . . . . . 12  |-  ( ( W  e. Word  B  /\  X  e. Word  B  /\  x  e.  ( 0..^ ( # `  X ) ) )  ->  ( ( W concat  X ) `  (
x  +  ( # `  W ) ) )  =  ( X `  x ) )
108103, 104, 106, 107syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  ( ( W concat  X ) `  (
x  +  ( # `  W ) ) )  =  ( X `  x ) )
109108eqcomd 2440 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  /\  x  e.  ( 0 ... (
( # `  X )  -  1 ) ) )  ->  ( X `  x )  =  ( ( W concat  X ) `
 ( x  +  ( # `  W ) ) ) )
11059, 38, 109seqshft2 11341 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  0 ( 
.+  ,  X ) `
 ( ( # `  X )  -  1 ) )  =  (  seq  ( 0  +  ( # `  W
) ) (  .+  ,  ( W concat  X
) ) `  (
( ( # `  X
)  -  1 )  +  ( # `  W
) ) ) )
111102, 110eqtr4d 2470 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  ( (
( # `  W )  -  1 )  +  1 ) (  .+  ,  ( W concat  X
) ) `  (
( ( # `  W
)  +  ( # `  X ) )  - 
1 ) )  =  (  seq  0 ( 
.+  ,  X ) `
 ( ( # `  X )  -  1 ) ) )
11294, 111oveq12d 6091 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( (  seq  0
(  .+  ,  ( W concat  X ) ) `  ( ( # `  W
)  -  1 ) )  .+  (  seq  ( ( ( # `  W )  -  1 )  +  1 ) (  .+  ,  ( W concat  X ) ) `
 ( ( (
# `  W )  +  ( # `  X
) )  -  1 ) ) )  =  ( (  seq  0
(  .+  ,  W
) `  ( ( # `
 W )  - 
1 ) )  .+  (  seq  0 (  .+  ,  X ) `  (
( # `  X )  -  1 ) ) ) )
11387, 112eqtrd 2467 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
(  seq  0 ( 
.+  ,  ( W concat  X ) ) `  ( ( ( # `  W )  +  (
# `  X )
)  -  1 ) )  =  ( (  seq  0 (  .+  ,  W ) `  (
( # `  W )  -  1 ) ) 
.+  (  seq  0
(  .+  ,  X
) `  ( ( # `
 X )  - 
1 ) ) ) )
11467, 113eqtr4d 2470 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( ( G  gsumg  W ) 
.+  ( G  gsumg  X ) )  =  (  seq  0 (  .+  , 
( W concat  X )
) `  ( (
( # `  W )  +  ( # `  X
) )  -  1 ) ) )
11546, 114eqtr4d 2470 . . . 4  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  ( W  =/=  (/)  /\  X  =/=  (/) ) )  -> 
( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) ) )
116115anassrs 630 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  W  e. Word  B  /\  X  e. Word  B
)  /\  W  =/=  (/) )  /\  X  =/=  (/) )  ->  ( G 
gsumg  ( W concat  X ) )  =  ( ( G 
gsumg  W )  .+  ( G  gsumg  X ) ) )
117 simpl2 961 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  ->  W  e. Word  B )
118 ccatrid 11741 . . . . . 6  |-  ( W  e. Word  B  ->  ( W concat 
(/) )  =  W )
119117, 118syl 16 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( W concat  (/) )  =  W )
120119oveq2d 6089 . . . 4  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( G  gsumg  ( W concat  (/) ) )  =  ( G  gsumg  W ) )
121 simpl1 960 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  ->  G  e.  Mnd )
12215gsumwcl 14778 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  W  e. Word  B )  ->  ( G  gsumg  W )  e.  B
)
1231223adant3 977 . . . . . 6  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  W )  e.  B
)
124123adantr 452 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( G  gsumg  W )  e.  B
)
12515, 16, 4mndrid 14709 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( G  gsumg  W )  e.  B
)  ->  ( ( G  gsumg  W )  .+  ( 0g `  G ) )  =  ( G  gsumg  W ) )
126121, 124, 125syl2anc 643 . . . 4  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( G  gsumg  W ) 
.+  ( 0g `  G ) )  =  ( G  gsumg  W ) )
127120, 126eqtr4d 2470 . . 3  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( G  gsumg  ( W concat  (/) ) )  =  ( ( G 
gsumg  W )  .+  ( 0g `  G ) ) )
12814, 116, 127pm2.61ne 2673 . 2  |-  ( ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  /\  W  =/=  (/) )  -> 
( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) ) )
129 ccatlid 11740 . . . . 5  |-  ( X  e. Word  B  ->  ( (/) concat  X )  =  X )
1301293ad2ant3 980 . . . 4  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( (/) concat  X )  =  X )
131130oveq2d 6089 . . 3  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  ( (/) concat  X ) )  =  ( G  gsumg  X ) )
132 simp1 957 . . . 4  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  G  e.  Mnd )
13315gsumwcl 14778 . . . . 5  |-  ( ( G  e.  Mnd  /\  X  e. Word  B )  ->  ( G  gsumg  X )  e.  B
)
1341333adant2 976 . . . 4  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  X )  e.  B
)
13515, 16, 4mndlid 14708 . . . 4  |-  ( ( G  e.  Mnd  /\  ( G  gsumg  X )  e.  B
)  ->  ( ( 0g `  G )  .+  ( G  gsumg  X ) )  =  ( G  gsumg  X ) )
136132, 134, 135syl2anc 643 . . 3  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  (
( 0g `  G
)  .+  ( G  gsumg  X ) )  =  ( G  gsumg  X ) )
137131, 136eqtr4d 2470 . 2  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  ( (/) concat  X ) )  =  ( ( 0g
`  G )  .+  ( G  gsumg  X ) ) )
1388, 128, 137pm2.61ne 2673 1  |-  ( ( G  e.  Mnd  /\  W  e. Word  B  /\  X  e. Word  B )  ->  ( G  gsumg  ( W concat  X ) )  =  ( ( G  gsumg  W )  .+  ( G  gsumg  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   (/)c0 3620   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   0cc0 8982   1c1 8983    + caddc 8985    - cmin 9283   NNcn 9992   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035  ..^cfzo 11127    seq cseq 11315   #chash 11610  Word cword 11709   concat cconcat 11710   Basecbs 13461   +g cplusg 13521   0gc0g 13715    gsumg cgsu 13716   Mndcmnd 14676
This theorem is referenced by:  gsumws2  14780  gsumspl  14781  gsumwspan  14783  frmdgsum  14799  frmdup1  14801  gsumwrev  15154  frgpuplem  15396  frgpup1  15399  psgnunilem5  27385  psgnuni  27390  psgnghm  27405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-word 11715  df-concat 11716  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-0g 13719  df-gsum 13720  df-mnd 14682  df-submnd 14731
  Copyright terms: Public domain W3C validator