MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpt Unicode version

Theorem gsumpt 15238
Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
gsumpt.b  |-  B  =  ( Base `  G
)
gsumpt.z  |-  .0.  =  ( 0g `  G )
gsumpt.g  |-  ( ph  ->  G  e.  Mnd )
gsumpt.a  |-  ( ph  ->  A  e.  V )
gsumpt.x  |-  ( ph  ->  X  e.  A )
gsumpt.f  |-  ( ph  ->  F : A --> B )
gsumpt.s  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  { X } )
Assertion
Ref Expression
gsumpt  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )

Proof of Theorem gsumpt
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 gsumpt.f . . . 4  |-  ( ph  ->  F : A --> B )
2 gsumpt.x . . . . 5  |-  ( ph  ->  X  e.  A )
32snssd 3776 . . . 4  |-  ( ph  ->  { X }  C_  A )
41, 3feqresmpt 5592 . . 3  |-  ( ph  ->  ( F  |`  { X } )  =  ( a  e.  { X }  |->  ( F `  a ) ) )
54oveq2d 5890 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  { X } ) )  =  ( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) ) )
6 gsumpt.b . . 3  |-  B  =  ( Base `  G
)
7 gsumpt.z . . 3  |-  .0.  =  ( 0g `  G )
8 eqid 2296 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
9 gsumpt.g . . 3  |-  ( ph  ->  G  e.  Mnd )
10 gsumpt.a . . 3  |-  ( ph  ->  A  e.  V )
11 ffvelrn 5679 . . . . . . . . 9  |-  ( ( F : A --> B  /\  X  e.  A )  ->  ( F `  X
)  e.  B )
121, 2, 11syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( F `  X
)  e.  B )
13 eqidd 2297 . . . . . . . 8  |-  ( ph  ->  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) )  =  ( ( F `
 X ) ( +g  `  G ) ( F `  X
) ) )
14 eqid 2296 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
156, 14, 8elcntzsn 14817 . . . . . . . . 9  |-  ( ( F `  X )  e.  B  ->  (
( F `  X
)  e.  ( (Cntz `  G ) `  {
( F `  X
) } )  <->  ( ( F `  X )  e.  B  /\  (
( F `  X
) ( +g  `  G
) ( F `  X ) )  =  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) ) ) ) )
1612, 15syl 15 . . . . . . . 8  |-  ( ph  ->  ( ( F `  X )  e.  ( (Cntz `  G ) `  { ( F `  X ) } )  <-> 
( ( F `  X )  e.  B  /\  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) )  =  ( ( F `
 X ) ( +g  `  G ) ( F `  X
) ) ) ) )
1712, 13, 16mpbir2and 888 . . . . . . 7  |-  ( ph  ->  ( F `  X
)  e.  ( (Cntz `  G ) `  {
( F `  X
) } ) )
1817snssd 3776 . . . . . 6  |-  ( ph  ->  { ( F `  X ) }  C_  ( (Cntz `  G ) `  { ( F `  X ) } ) )
19 eqid 2296 . . . . . . 7  |-  (mrCls `  (SubMnd `  G ) )  =  (mrCls `  (SubMnd `  G ) )
20 eqid 2296 . . . . . . 7  |-  ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  =  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
218, 19, 20cntzspan 15153 . . . . . 6  |-  ( ( G  e.  Mnd  /\  { ( F `  X
) }  C_  (
(Cntz `  G ) `  { ( F `  X ) } ) )  ->  ( Gs  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  e. CMnd )
229, 18, 21syl2anc 642 . . . . 5  |-  ( ph  ->  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )  e. CMnd )
236submacs 14458 . . . . . . . 8  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
24 acsmre 13570 . . . . . . . 8  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
259, 23, 243syl 18 . . . . . . 7  |-  ( ph  ->  (SubMnd `  G )  e.  (Moore `  B )
)
2612snssd 3776 . . . . . . 7  |-  ( ph  ->  { ( F `  X ) }  C_  B )
2719mrccl 13529 . . . . . . 7  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  { ( F `  X ) }  C_  B )  ->  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )
)
2825, 26, 27syl2anc 642 . . . . . 6  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } )  e.  (SubMnd `  G
) )
2920, 8submcmn2 15151 . . . . . 6  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  C_  ( (Cntz `  G ) `  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) ) ) )
3028, 29syl 15 . . . . 5  |-  ( ph  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  C_  ( (Cntz `  G ) `  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) ) ) )
3122, 30mpbid 201 . . . 4  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) 
C_  ( (Cntz `  G ) `  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) ) )
32 ffn 5405 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
331, 32syl 15 . . . . . 6  |-  ( ph  ->  F  Fn  A )
34 simpr 447 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  a  =  X )
3534fveq2d 5545 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  a )  =  ( F `  X ) )
3619mrcssid 13535 . . . . . . . . . . . 12  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  { ( F `  X ) }  C_  B )  ->  { ( F `  X ) }  C_  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
3725, 26, 36syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  { ( F `  X ) }  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
38 fvex 5555 . . . . . . . . . . . 12  |-  ( F `
 X )  e. 
_V
3938snss 3761 . . . . . . . . . . 11  |-  ( ( F `  X )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } )  <->  { ( F `  X ) }  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
4037, 39sylibr 203 . . . . . . . . . 10  |-  ( ph  ->  ( F `  X
)  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
4140ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  X )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
4235, 41eqeltrd 2370 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
43 eldifsn 3762 . . . . . . . . . . 11  |-  ( a  e.  ( A  \  { X } )  <->  ( a  e.  A  /\  a  =/=  X ) )
44 gsumpt.s . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  { X } )
451, 44suppssr 5675 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( A  \  { X } ) )  -> 
( F `  a
)  =  .0.  )
4643, 45sylan2br 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  -> 
( F `  a
)  =  .0.  )
477subm0cl 14445 . . . . . . . . . . . 12  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
4828, 47syl 15 . . . . . . . . . . 11  |-  ( ph  ->  .0.  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
4948adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
5046, 49eqeltrd 2370 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  -> 
( F `  a
)  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
5150anassrs 629 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =/=  X )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
5242, 51pm2.61dane 2537 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
5352ralrimiva 2639 . . . . . 6  |-  ( ph  ->  A. a  e.  A  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
54 ffnfv 5701 . . . . . 6  |-  ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } )  <->  ( F  Fn  A  /\  A. a  e.  A  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) ) )
5533, 53, 54sylanbrc 645 . . . . 5  |-  ( ph  ->  F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
56 frn 5411 . . . . 5  |-  ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } )  ->  ran  F 
C_  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
5755, 56syl 15 . . . 4  |-  ( ph  ->  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
588cntzidss 14829 . . . 4  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) 
C_  ( (Cntz `  G ) `  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  /\  ran  F  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  ->  ran  F  C_  (
(Cntz `  G ) `  ran  F ) )
5931, 57, 58syl2anc 642 . . 3  |-  ( ph  ->  ran  F  C_  (
(Cntz `  G ) `  ran  F ) )
60 snfi 6957 . . . 4  |-  { X }  e.  Fin
61 ssfi 7099 . . . 4  |-  ( ( { X }  e.  Fin  /\  ( `' F " ( _V  \  {  .0.  } ) )  C_  { X } )  -> 
( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
6260, 44, 61sylancr 644 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
636, 7, 8, 9, 10, 1, 59, 44, 62gsumzres 15210 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  { X } ) )  =  ( G  gsumg  F ) )
64 fveq2 5541 . . . 4  |-  ( a  =  X  ->  ( F `  a )  =  ( F `  X ) )
656, 64gsumsn 15236 . . 3  |-  ( ( G  e.  Mnd  /\  X  e.  A  /\  ( F `  X )  e.  B )  -> 
( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) )  =  ( F `
 X ) )
669, 2, 12, 65syl3anc 1182 . 2  |-  ( ph  ->  ( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) )  =  ( F `
 X ) )
675, 63, 663eqtr3d 2336 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    \ cdif 3162    C_ wss 3165   {csn 3653    e. cmpt 4093   `'ccnv 4704   ran crn 4706    |` cres 4707   "cima 4708    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   Fincfn 6879   Basecbs 13164   ↾s cress 13165   +g cplusg 13224   0gc0g 13416    gsumg cgsu 13417  Moorecmre 13500  mrClscmrc 13501  ACScacs 13503   Mndcmnd 14377  SubMndcsubmnd 14430  Cntzccntz 14807  CMndccmn 15105
This theorem is referenced by:  dprdfid  15268  coe1tmmul2  16368  coe1tmmul  16369  evlslem3  19414  evlslem1  19415  coe1mul3  19501  tayl0  19757  jensen  20299  uvcresum  27345  frlmup2  27354  mamulid  27561  mamurid  27562
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-gsum 13421  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107
  Copyright terms: Public domain W3C validator