MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumspl Structured version   Unicode version

Theorem gsumspl 14820
Description: The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
gsumspl.b  |-  B  =  ( Base `  M
)
gsumspl.m  |-  ( ph  ->  M  e.  Mnd )
gsumspl.s  |-  ( ph  ->  S  e. Word  B )
gsumspl.f  |-  ( ph  ->  F  e.  ( 0 ... T ) )
gsumspl.t  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
gsumspl.x  |-  ( ph  ->  X  e. Word  B )
gsumspl.y  |-  ( ph  ->  Y  e. Word  B )
gsumspl.eq  |-  ( ph  ->  ( M  gsumg  X )  =  ( M  gsumg  Y ) )
Assertion
Ref Expression
gsumspl  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  X >. ) )  =  ( M 
gsumg  ( S splice  <. F ,  T ,  Y >. ) ) )

Proof of Theorem gsumspl
StepHypRef Expression
1 gsumspl.eq . . . 4  |-  ( ph  ->  ( M  gsumg  X )  =  ( M  gsumg  Y ) )
21oveq2d 6126 . . 3  |-  ( ph  ->  ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M
) ( M  gsumg  X ) )  =  ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) )
32oveq1d 6125 . 2  |-  ( ph  ->  ( ( ( M 
gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  X ) ) ( +g  `  M ) ( M  gsumg  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( ( M 
gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) ( +g  `  M ) ( M  gsumg  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
4 gsumspl.s . . . . 5  |-  ( ph  ->  S  e. Word  B )
5 gsumspl.f . . . . 5  |-  ( ph  ->  F  e.  ( 0 ... T ) )
6 gsumspl.t . . . . 5  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
7 gsumspl.x . . . . 5  |-  ( ph  ->  X  e. Word  B )
8 splval 11811 . . . . 5  |-  ( ( S  e. Word  B  /\  ( F  e.  (
0 ... T )  /\  T  e.  ( 0 ... ( # `  S
) )  /\  X  e. Word  B ) )  -> 
( S splice  <. F ,  T ,  X >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
94, 5, 6, 7, 8syl13anc 1187 . . . 4  |-  ( ph  ->  ( S splice  <. F ,  T ,  X >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
109oveq2d 6126 . . 3  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  X >. ) )  =  ( M 
gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
11 gsumspl.m . . . 4  |-  ( ph  ->  M  e.  Mnd )
12 swrdcl 11797 . . . . . 6  |-  ( S  e. Word  B  ->  ( S substr  <. 0 ,  F >. )  e. Word  B )
134, 12syl 16 . . . . 5  |-  ( ph  ->  ( S substr  <. 0 ,  F >. )  e. Word  B
)
14 ccatcl 11774 . . . . 5  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  B  /\  X  e. Word  B )  ->  ( ( S substr  <. 0 ,  F >. ) concat  X )  e. Word  B
)
1513, 7, 14syl2anc 644 . . . 4  |-  ( ph  ->  ( ( S substr  <. 0 ,  F >. ) concat  X )  e. Word  B )
16 swrdcl 11797 . . . . 5  |-  ( S  e. Word  B  ->  ( S substr  <. T ,  (
# `  S ) >. )  e. Word  B )
174, 16syl 16 . . . 4  |-  ( ph  ->  ( S substr  <. T , 
( # `  S )
>. )  e. Word  B )
18 gsumspl.b . . . . 5  |-  B  =  ( Base `  M
)
19 eqid 2442 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
2018, 19gsumccat 14818 . . . 4  |-  ( ( M  e.  Mnd  /\  ( ( S substr  <. 0 ,  F >. ) concat  X )  e. Word  B  /\  ( S substr  <. T ,  ( # `  S ) >. )  e. Word  B )  ->  ( M  gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
2111, 15, 17, 20syl3anc 1185 . . 3  |-  ( ph  ->  ( M  gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
2218, 19gsumccat 14818 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( S substr  <. 0 ,  F >. )  e. Word  B  /\  X  e. Word  B )  ->  ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X ) )  =  ( ( M 
gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  X ) ) )
2311, 13, 7, 22syl3anc 1185 . . . 4  |-  ( ph  ->  ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X )
)  =  ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  X ) ) )
2423oveq1d 6125 . . 3  |-  ( ph  ->  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) )  =  ( ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M
) ( M  gsumg  X ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
2510, 21, 243eqtrd 2478 . 2  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  X >. ) )  =  ( ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  X ) ) ( +g  `  M ) ( M  gsumg  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
26 gsumspl.y . . . . 5  |-  ( ph  ->  Y  e. Word  B )
27 splval 11811 . . . . 5  |-  ( ( S  e. Word  B  /\  ( F  e.  (
0 ... T )  /\  T  e.  ( 0 ... ( # `  S
) )  /\  Y  e. Word  B ) )  -> 
( S splice  <. F ,  T ,  Y >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
284, 5, 6, 26, 27syl13anc 1187 . . . 4  |-  ( ph  ->  ( S splice  <. F ,  T ,  Y >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
2928oveq2d 6126 . . 3  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  Y >. ) )  =  ( M 
gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
30 ccatcl 11774 . . . . 5  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  B  /\  Y  e. Word  B )  ->  ( ( S substr  <. 0 ,  F >. ) concat  Y )  e. Word  B
)
3113, 26, 30syl2anc 644 . . . 4  |-  ( ph  ->  ( ( S substr  <. 0 ,  F >. ) concat  Y )  e. Word  B )
3218, 19gsumccat 14818 . . . 4  |-  ( ( M  e.  Mnd  /\  ( ( S substr  <. 0 ,  F >. ) concat  Y )  e. Word  B  /\  ( S substr  <. T ,  ( # `  S ) >. )  e. Word  B )  ->  ( M  gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
3311, 31, 17, 32syl3anc 1185 . . 3  |-  ( ph  ->  ( M  gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
3418, 19gsumccat 14818 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( S substr  <. 0 ,  F >. )  e. Word  B  /\  Y  e. Word  B )  ->  ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y ) )  =  ( ( M 
gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) )
3511, 13, 26, 34syl3anc 1185 . . . 4  |-  ( ph  ->  ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y )
)  =  ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) )
3635oveq1d 6125 . . 3  |-  ( ph  ->  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) )  =  ( ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M
) ( M  gsumg  Y ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
3729, 33, 363eqtrd 2478 . 2  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  Y >. ) )  =  ( ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) ( +g  `  M ) ( M  gsumg  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
383, 25, 373eqtr4d 2484 1  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  X >. ) )  =  ( M 
gsumg  ( S splice  <. F ,  T ,  Y >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1727   <.cop 3841   <.cotp 3842   ` cfv 5483  (class class class)co 6110   0cc0 9021   ...cfz 11074   #chash 11649  Word cword 11748   concat cconcat 11749   substr csubstr 11751   splice csplice 11752   Basecbs 13500   +g cplusg 13560    gsumg cgsu 13755   Mndcmnd 14715
This theorem is referenced by:  psgnunilem2  27433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-ot 3848  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-card 7857  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-2 10089  df-n0 10253  df-z 10314  df-uz 10520  df-fz 11075  df-fzo 11167  df-seq 11355  df-hash 11650  df-word 11754  df-concat 11755  df-substr 11757  df-splice 11758  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-0g 13758  df-gsum 13759  df-mnd 14721  df-submnd 14770
  Copyright terms: Public domain W3C validator