Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumvsmul Unicode version

Theorem gsumvsmul 26635
Description: Pull a scalar multiplication out of a sum of vectors. EDITORIAL: properly generalizes gsummulc2 15669, since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
gsumvsmul.b  |-  B  =  ( Base `  R
)
gsumvsmul.s  |-  S  =  (Scalar `  R )
gsumvsmul.k  |-  K  =  ( Base `  S
)
gsumvsmul.z  |-  .0.  =  ( 0g `  R )
gsumvsmul.p  |-  .+  =  ( +g  `  R )
gsumvsmul.t  |-  .x.  =  ( .s `  R )
gsumvsmul.r  |-  ( ph  ->  R  e.  LMod )
gsumvsmul.a  |-  ( ph  ->  A  e.  V )
gsumvsmul.x  |-  ( ph  ->  X  e.  K )
gsumvsmul.y  |-  ( (
ph  /\  k  e.  A )  ->  Y  e.  B )
gsumvsmul.n  |-  ( ph  ->  ( `' ( k  e.  A  |->  Y )
" ( _V  \  {  .0.  } ) )  e.  Fin )
Assertion
Ref Expression
gsumvsmul  |-  ( ph  ->  ( R  gsumg  ( k  e.  A  |->  ( X  .x.  Y
) ) )  =  ( X  .x.  ( R  gsumg  ( k  e.  A  |->  Y ) ) ) )
Distinct variable groups:    A, k    B, k    ph, k    .x. , k    S, k    k, K    k, X    .0. , k
Allowed substitution hints:    .+ ( k)    R( k)    V( k)    Y( k)

Proof of Theorem gsumvsmul
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 gsumvsmul.b . 2  |-  B  =  ( Base `  R
)
2 gsumvsmul.z . 2  |-  .0.  =  ( 0g `  R )
3 gsumvsmul.r . . 3  |-  ( ph  ->  R  e.  LMod )
4 lmodcmn 15947 . . 3  |-  ( R  e.  LMod  ->  R  e. CMnd
)
53, 4syl 16 . 2  |-  ( ph  ->  R  e. CMnd )
6 cmnmnd 15382 . . 3  |-  ( R  e. CMnd  ->  R  e.  Mnd )
75, 6syl 16 . 2  |-  ( ph  ->  R  e.  Mnd )
8 gsumvsmul.a . 2  |-  ( ph  ->  A  e.  V )
9 gsumvsmul.x . . . 4  |-  ( ph  ->  X  e.  K )
10 gsumvsmul.s . . . . 5  |-  S  =  (Scalar `  R )
11 gsumvsmul.t . . . . 5  |-  .x.  =  ( .s `  R )
12 gsumvsmul.k . . . . 5  |-  K  =  ( Base `  S
)
131, 10, 11, 12lmodvsghm 15960 . . . 4  |-  ( ( R  e.  LMod  /\  X  e.  K )  ->  (
y  e.  B  |->  ( X  .x.  y ) )  e.  ( R 
GrpHom  R ) )
143, 9, 13syl2anc 643 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( X  .x.  y
) )  e.  ( R  GrpHom  R ) )
15 ghmmhm 14971 . . 3  |-  ( ( y  e.  B  |->  ( X  .x.  y ) )  e.  ( R 
GrpHom  R )  ->  (
y  e.  B  |->  ( X  .x.  y ) )  e.  ( R MndHom  R ) )
1614, 15syl 16 . 2  |-  ( ph  ->  ( y  e.  B  |->  ( X  .x.  y
) )  e.  ( R MndHom  R ) )
17 gsumvsmul.y . 2  |-  ( (
ph  /\  k  e.  A )  ->  Y  e.  B )
18 gsumvsmul.n . 2  |-  ( ph  ->  ( `' ( k  e.  A  |->  Y )
" ( _V  \  {  .0.  } ) )  e.  Fin )
19 oveq2 6048 . 2  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
20 oveq2 6048 . 2  |-  ( y  =  ( R  gsumg  ( k  e.  A  |->  Y ) )  ->  ( X  .x.  y )  =  ( X  .x.  ( R 
gsumg  ( k  e.  A  |->  Y ) ) ) )
211, 2, 5, 7, 8, 16, 17, 18, 19, 20gsummhm2 15490 1  |-  ( ph  ->  ( R  gsumg  ( k  e.  A  |->  ( X  .x.  Y
) ) )  =  ( X  .x.  ( R  gsumg  ( k  e.  A  |->  Y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    \ cdif 3277   {csn 3774    e. cmpt 4226   `'ccnv 4836   "cima 4840   ` cfv 5413  (class class class)co 6040   Fincfn 7068   Basecbs 13424   +g cplusg 13484  Scalarcsca 13487   .scvsca 13488   0gc0g 13678    gsumg cgsu 13679   Mndcmnd 14639   MndHom cmhm 14691    GrpHom cghm 14958  CMndccmn 15367   LModclmod 15905
This theorem is referenced by:  frlmup1  27118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-plusg 13497  df-0g 13682  df-gsum 13683  df-mnd 14645  df-mhm 14693  df-grp 14767  df-minusg 14768  df-ghm 14959  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-lmod 15907
  Copyright terms: Public domain W3C validator