MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzadd Unicode version

Theorem gsumzadd 15447
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
gsumzadd.b  |-  B  =  ( Base `  G
)
gsumzadd.0  |-  .0.  =  ( 0g `  G )
gsumzadd.p  |-  .+  =  ( +g  `  G )
gsumzadd.z  |-  Z  =  (Cntz `  G )
gsumzadd.g  |-  ( ph  ->  G  e.  Mnd )
gsumzadd.a  |-  ( ph  ->  A  e.  V )
gsumzadd.fn  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
gsumzadd.hn  |-  ( ph  ->  ( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin )
gsumzadd.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
gsumzadd.c  |-  ( ph  ->  S  C_  ( Z `  S ) )
gsumzadd.f  |-  ( ph  ->  F : A --> S )
gsumzadd.h  |-  ( ph  ->  H : A --> S )
Assertion
Ref Expression
gsumzadd  |-  ( ph  ->  ( G  gsumg  ( F  o F 
.+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )

Proof of Theorem gsumzadd
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.b . 2  |-  B  =  ( Base `  G
)
2 gsumzadd.0 . 2  |-  .0.  =  ( 0g `  G )
3 gsumzadd.p . 2  |-  .+  =  ( +g  `  G )
4 gsumzadd.z . 2  |-  Z  =  (Cntz `  G )
5 gsumzadd.g . 2  |-  ( ph  ->  G  e.  Mnd )
6 gsumzadd.a . 2  |-  ( ph  ->  A  e.  V )
7 gsumzadd.fn . 2  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
8 gsumzadd.hn . 2  |-  ( ph  ->  ( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin )
9 eqid 2380 . 2  |-  ( `' ( F  u.  H
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( F  u.  H ) " ( _V  \  {  .0.  }
) )
10 gsumzadd.f . . 3  |-  ( ph  ->  F : A --> S )
11 gsumzadd.s . . . 4  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
121submss 14670 . . . 4  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  B
)
1311, 12syl 16 . . 3  |-  ( ph  ->  S  C_  B )
14 fss 5532 . . 3  |-  ( ( F : A --> S  /\  S  C_  B )  ->  F : A --> B )
1510, 13, 14syl2anc 643 . 2  |-  ( ph  ->  F : A --> B )
16 gsumzadd.h . . 3  |-  ( ph  ->  H : A --> S )
17 fss 5532 . . 3  |-  ( ( H : A --> S  /\  S  C_  B )  ->  H : A --> B )
1816, 13, 17syl2anc 643 . 2  |-  ( ph  ->  H : A --> B )
19 gsumzadd.c . . 3  |-  ( ph  ->  S  C_  ( Z `  S ) )
20 frn 5530 . . . 4  |-  ( F : A --> S  ->  ran  F  C_  S )
2110, 20syl 16 . . 3  |-  ( ph  ->  ran  F  C_  S
)
224cntzidss 15056 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  F 
C_  S )  ->  ran  F  C_  ( Z `  ran  F ) )
2319, 21, 22syl2anc 643 . 2  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
24 frn 5530 . . . 4  |-  ( H : A --> S  ->  ran  H  C_  S )
2516, 24syl 16 . . 3  |-  ( ph  ->  ran  H  C_  S
)
264cntzidss 15056 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  H 
C_  S )  ->  ran  H  C_  ( Z `  ran  H ) )
2719, 25, 26syl2anc 643 . 2  |-  ( ph  ->  ran  H  C_  ( Z `  ran  H ) )
283submcl 14673 . . . . . . 7  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x  .+  y )  e.  S )
29283expb 1154 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
3011, 29sylan 458 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
31 inidm 3486 . . . . 5  |-  ( A  i^i  A )  =  A
3230, 10, 16, 6, 6, 31off 6252 . . . 4  |-  ( ph  ->  ( F  o F 
.+  H ) : A --> S )
33 frn 5530 . . . 4  |-  ( ( F  o F  .+  H ) : A --> S  ->  ran  ( F  o F  .+  H ) 
C_  S )
3432, 33syl 16 . . 3  |-  ( ph  ->  ran  ( F  o F  .+  H )  C_  S )
354cntzidss 15056 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  ( F  o F  .+  H )  C_  S
)  ->  ran  ( F  o F  .+  H
)  C_  ( Z `  ran  ( F  o F  .+  H ) ) )
3619, 34, 35syl2anc 643 . 2  |-  ( ph  ->  ran  ( F  o F  .+  H )  C_  ( Z `  ran  ( F  o F  .+  H
) ) )
3719adantr 452 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  ( Z `  S ) )
3813adantr 452 . . . . 5  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  B )
395adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  G  e.  Mnd )
40 vex 2895 . . . . . . . 8  |-  x  e. 
_V
4140a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  x  e.  _V )
4211adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  e.  (SubMnd `  G
) )
43 simpl 444 . . . . . . . 8  |-  ( ( x  C_  A  /\  k  e.  ( A  \  x ) )  ->  x  C_  A )
44 fssres 5543 . . . . . . . 8  |-  ( ( H : A --> S  /\  x  C_  A )  -> 
( H  |`  x
) : x --> S )
4516, 43, 44syl2an 464 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( H  |`  x
) : x --> S )
4627adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  ran  H  C_  ( Z `  ran  H ) )
47 resss 5103 . . . . . . . . 9  |-  ( H  |`  x )  C_  H
48 rnss 5031 . . . . . . . . 9  |-  ( ( H  |`  x )  C_  H  ->  ran  ( H  |`  x )  C_  ran  H )
4947, 48ax-mp 8 . . . . . . . 8  |-  ran  ( H  |`  x )  C_  ran  H
504cntzidss 15056 . . . . . . . 8  |-  ( ( ran  H  C_  ( Z `  ran  H )  /\  ran  ( H  |`  x )  C_  ran  H )  ->  ran  ( H  |`  x )  C_  ( Z `  ran  ( H  |`  x ) ) )
5146, 49, 50sylancl 644 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  ran  ( H  |`  x
)  C_  ( Z `  ran  ( H  |`  x ) ) )
528adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin )
53 cnvss 4978 . . . . . . . . 9  |-  ( ( H  |`  x )  C_  H  ->  `' ( H  |`  x )  C_  `' H )
54 imass1 5172 . . . . . . . . 9  |-  ( `' ( H  |`  x
)  C_  `' H  ->  ( `' ( H  |`  x ) " ( _V  \  {  .0.  }
) )  C_  ( `' H " ( _V 
\  {  .0.  }
) ) )
5547, 53, 54mp2b 10 . . . . . . . 8  |-  ( `' ( H  |`  x
) " ( _V 
\  {  .0.  }
) )  C_  ( `' H " ( _V 
\  {  .0.  }
) )
56 ssfi 7258 . . . . . . . 8  |-  ( ( ( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( H  |`  x )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' H " ( _V  \  {  .0.  } ) ) )  ->  ( `' ( H  |`  x ) " ( _V  \  {  .0.  } ) )  e.  Fin )
5752, 55, 56sylancl 644 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( `' ( H  |`  x ) " ( _V  \  {  .0.  }
) )  e.  Fin )
582, 4, 39, 41, 42, 45, 51, 57gsumzsubmcl 15443 . . . . . 6  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( G  gsumg  ( H  |`  x
) )  e.  S
)
5958snssd 3879 . . . . 5  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  { ( G  gsumg  ( H  |`  x ) ) } 
C_  S )
601, 4cntz2ss 15051 . . . . 5  |-  ( ( S  C_  B  /\  { ( G  gsumg  ( H  |`  x
) ) }  C_  S )  ->  ( Z `  S )  C_  ( Z `  {
( G  gsumg  ( H  |`  x
) ) } ) )
6138, 59, 60syl2anc 643 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( Z `  S
)  C_  ( Z `  { ( G  gsumg  ( H  |`  x ) ) } ) )
6237, 61sstrd 3294 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  ( Z `  { ( G  gsumg  ( H  |`  x ) ) } ) )
63 eldifi 3405 . . . . 5  |-  ( k  e.  ( A  \  x )  ->  k  e.  A )
6463adantl 453 . . . 4  |-  ( ( x  C_  A  /\  k  e.  ( A  \  x ) )  -> 
k  e.  A )
65 ffvelrn 5800 . . . 4  |-  ( ( F : A --> S  /\  k  e.  A )  ->  ( F `  k
)  e.  S )
6610, 64, 65syl2an 464 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( F `  k
)  e.  S )
6762, 66sseldd 3285 . 2  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( F `  k
)  e.  ( Z `
 { ( G 
gsumg  ( H  |`  x ) ) } ) )
681, 2, 3, 4, 5, 6, 7, 8, 9, 15, 18, 23, 27, 36, 67gsumzaddlem 15446 1  |-  ( ph  ->  ( G  gsumg  ( F  o F 
.+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2892    \ cdif 3253    u. cun 3254    C_ wss 3256   {csn 3750   `'ccnv 4810   ran crn 4812    |` cres 4813   "cima 4814   -->wf 5383   ` cfv 5387  (class class class)co 6013    o Fcof 6235   Fincfn 7038   Basecbs 13389   +g cplusg 13449   0gc0g 13643    gsumg cgsu 13644   Mndcmnd 14604  SubMndcsubmnd 14657  Cntzccntz 15034
This theorem is referenced by:  gsumadd  15448  gsumzsplit  15449
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-oi 7405  df-card 7752  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-n0 10147  df-z 10208  df-uz 10414  df-fz 10969  df-fzo 11059  df-seq 11244  df-hash 11539  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-0g 13647  df-gsum 13648  df-mnd 14610  df-submnd 14659  df-cntz 15036
  Copyright terms: Public domain W3C validator