MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzadd Unicode version

Theorem gsumzadd 15204
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
gsumzadd.b  |-  B  =  ( Base `  G
)
gsumzadd.0  |-  .0.  =  ( 0g `  G )
gsumzadd.p  |-  .+  =  ( +g  `  G )
gsumzadd.z  |-  Z  =  (Cntz `  G )
gsumzadd.g  |-  ( ph  ->  G  e.  Mnd )
gsumzadd.a  |-  ( ph  ->  A  e.  V )
gsumzadd.fn  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
gsumzadd.hn  |-  ( ph  ->  ( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin )
gsumzadd.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
gsumzadd.c  |-  ( ph  ->  S  C_  ( Z `  S ) )
gsumzadd.f  |-  ( ph  ->  F : A --> S )
gsumzadd.h  |-  ( ph  ->  H : A --> S )
Assertion
Ref Expression
gsumzadd  |-  ( ph  ->  ( G  gsumg  ( F  o F 
.+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )

Proof of Theorem gsumzadd
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.b . 2  |-  B  =  ( Base `  G
)
2 gsumzadd.0 . 2  |-  .0.  =  ( 0g `  G )
3 gsumzadd.p . 2  |-  .+  =  ( +g  `  G )
4 gsumzadd.z . 2  |-  Z  =  (Cntz `  G )
5 gsumzadd.g . 2  |-  ( ph  ->  G  e.  Mnd )
6 gsumzadd.a . 2  |-  ( ph  ->  A  e.  V )
7 gsumzadd.fn . 2  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
8 gsumzadd.hn . 2  |-  ( ph  ->  ( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin )
9 eqid 2283 . 2  |-  ( `' ( F  u.  H
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( F  u.  H ) " ( _V  \  {  .0.  }
) )
10 gsumzadd.f . . 3  |-  ( ph  ->  F : A --> S )
11 gsumzadd.s . . . 4  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
121submss 14427 . . . 4  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  B
)
1311, 12syl 15 . . 3  |-  ( ph  ->  S  C_  B )
14 fss 5397 . . 3  |-  ( ( F : A --> S  /\  S  C_  B )  ->  F : A --> B )
1510, 13, 14syl2anc 642 . 2  |-  ( ph  ->  F : A --> B )
16 gsumzadd.h . . 3  |-  ( ph  ->  H : A --> S )
17 fss 5397 . . 3  |-  ( ( H : A --> S  /\  S  C_  B )  ->  H : A --> B )
1816, 13, 17syl2anc 642 . 2  |-  ( ph  ->  H : A --> B )
19 gsumzadd.c . . 3  |-  ( ph  ->  S  C_  ( Z `  S ) )
20 frn 5395 . . . 4  |-  ( F : A --> S  ->  ran  F  C_  S )
2110, 20syl 15 . . 3  |-  ( ph  ->  ran  F  C_  S
)
224cntzidss 14813 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  F 
C_  S )  ->  ran  F  C_  ( Z `  ran  F ) )
2319, 21, 22syl2anc 642 . 2  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
24 frn 5395 . . . 4  |-  ( H : A --> S  ->  ran  H  C_  S )
2516, 24syl 15 . . 3  |-  ( ph  ->  ran  H  C_  S
)
264cntzidss 14813 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  H 
C_  S )  ->  ran  H  C_  ( Z `  ran  H ) )
2719, 25, 26syl2anc 642 . 2  |-  ( ph  ->  ran  H  C_  ( Z `  ran  H ) )
283submcl 14430 . . . . . . 7  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x  .+  y )  e.  S )
29283expb 1152 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
3011, 29sylan 457 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
31 inidm 3378 . . . . 5  |-  ( A  i^i  A )  =  A
3230, 10, 16, 6, 6, 31off 6093 . . . 4  |-  ( ph  ->  ( F  o F 
.+  H ) : A --> S )
33 frn 5395 . . . 4  |-  ( ( F  o F  .+  H ) : A --> S  ->  ran  ( F  o F  .+  H ) 
C_  S )
3432, 33syl 15 . . 3  |-  ( ph  ->  ran  ( F  o F  .+  H )  C_  S )
354cntzidss 14813 . . 3  |-  ( ( S  C_  ( Z `  S )  /\  ran  ( F  o F  .+  H )  C_  S
)  ->  ran  ( F  o F  .+  H
)  C_  ( Z `  ran  ( F  o F  .+  H ) ) )
3619, 34, 35syl2anc 642 . 2  |-  ( ph  ->  ran  ( F  o F  .+  H )  C_  ( Z `  ran  ( F  o F  .+  H
) ) )
3719adantr 451 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  ( Z `  S ) )
3813adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  B )
395adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  G  e.  Mnd )
40 vex 2791 . . . . . . . 8  |-  x  e. 
_V
4140a1i 10 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  x  e.  _V )
4211adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  e.  (SubMnd `  G
) )
43 simpl 443 . . . . . . . 8  |-  ( ( x  C_  A  /\  k  e.  ( A  \  x ) )  ->  x  C_  A )
44 fssres 5408 . . . . . . . 8  |-  ( ( H : A --> S  /\  x  C_  A )  -> 
( H  |`  x
) : x --> S )
4516, 43, 44syl2an 463 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( H  |`  x
) : x --> S )
4627adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  ran  H  C_  ( Z `  ran  H ) )
47 resss 4979 . . . . . . . . 9  |-  ( H  |`  x )  C_  H
48 rnss 4907 . . . . . . . . 9  |-  ( ( H  |`  x )  C_  H  ->  ran  ( H  |`  x )  C_  ran  H )
4947, 48ax-mp 8 . . . . . . . 8  |-  ran  ( H  |`  x )  C_  ran  H
504cntzidss 14813 . . . . . . . 8  |-  ( ( ran  H  C_  ( Z `  ran  H )  /\  ran  ( H  |`  x )  C_  ran  H )  ->  ran  ( H  |`  x )  C_  ( Z `  ran  ( H  |`  x ) ) )
5146, 49, 50sylancl 643 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  ran  ( H  |`  x
)  C_  ( Z `  ran  ( H  |`  x ) ) )
528adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin )
53 cnvss 4854 . . . . . . . . 9  |-  ( ( H  |`  x )  C_  H  ->  `' ( H  |`  x )  C_  `' H )
54 imass1 5048 . . . . . . . . 9  |-  ( `' ( H  |`  x
)  C_  `' H  ->  ( `' ( H  |`  x ) " ( _V  \  {  .0.  }
) )  C_  ( `' H " ( _V 
\  {  .0.  }
) ) )
5547, 53, 54mp2b 9 . . . . . . . 8  |-  ( `' ( H  |`  x
) " ( _V 
\  {  .0.  }
) )  C_  ( `' H " ( _V 
\  {  .0.  }
) )
56 ssfi 7083 . . . . . . . 8  |-  ( ( ( `' H "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( H  |`  x )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' H " ( _V  \  {  .0.  } ) ) )  ->  ( `' ( H  |`  x ) " ( _V  \  {  .0.  } ) )  e.  Fin )
5752, 55, 56sylancl 643 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( `' ( H  |`  x ) " ( _V  \  {  .0.  }
) )  e.  Fin )
582, 4, 39, 41, 42, 45, 51, 57gsumzsubmcl 15200 . . . . . 6  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( G  gsumg  ( H  |`  x
) )  e.  S
)
5958snssd 3760 . . . . 5  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  { ( G  gsumg  ( H  |`  x ) ) } 
C_  S )
601, 4cntz2ss 14808 . . . . 5  |-  ( ( S  C_  B  /\  { ( G  gsumg  ( H  |`  x
) ) }  C_  S )  ->  ( Z `  S )  C_  ( Z `  {
( G  gsumg  ( H  |`  x
) ) } ) )
6138, 59, 60syl2anc 642 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( Z `  S
)  C_  ( Z `  { ( G  gsumg  ( H  |`  x ) ) } ) )
6237, 61sstrd 3189 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  ->  S  C_  ( Z `  { ( G  gsumg  ( H  |`  x ) ) } ) )
63 eldifi 3298 . . . . 5  |-  ( k  e.  ( A  \  x )  ->  k  e.  A )
6463adantl 452 . . . 4  |-  ( ( x  C_  A  /\  k  e.  ( A  \  x ) )  -> 
k  e.  A )
65 ffvelrn 5663 . . . 4  |-  ( ( F : A --> S  /\  k  e.  A )  ->  ( F `  k
)  e.  S )
6610, 64, 65syl2an 463 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( F `  k
)  e.  S )
6762, 66sseldd 3181 . 2  |-  ( (
ph  /\  ( x  C_  A  /\  k  e.  ( A  \  x
) ) )  -> 
( F `  k
)  e.  ( Z `
 { ( G 
gsumg  ( H  |`  x ) ) } ) )
681, 2, 3, 4, 5, 6, 7, 8, 9, 15, 18, 23, 27, 36, 67gsumzaddlem 15203 1  |-  ( ph  ->  ( G  gsumg  ( F  o F 
.+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    \ cdif 3149    u. cun 3150    C_ wss 3152   {csn 3640   `'ccnv 4688   ran crn 4690    |` cres 4691   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   Fincfn 6863   Basecbs 13148   +g cplusg 13208   0gc0g 13400    gsumg cgsu 13401   Mndcmnd 14361  SubMndcsubmnd 14414  Cntzccntz 14791
This theorem is referenced by:  gsumadd  15205  gsumzsplit  15206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mnd 14367  df-submnd 14416  df-cntz 14793
  Copyright terms: Public domain W3C validator