MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzf1o Unicode version

Theorem gsumzf1o 15212
Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gsumzcl.b  |-  B  =  ( Base `  G
)
gsumzcl.0  |-  .0.  =  ( 0g `  G )
gsumzcl.z  |-  Z  =  (Cntz `  G )
gsumzcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumzcl.a  |-  ( ph  ->  A  e.  V )
gsumzcl.f  |-  ( ph  ->  F : A --> B )
gsumzcl.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzcl.w  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
gsumzf1o.h  |-  ( ph  ->  H : C -1-1-onto-> A )
Assertion
Ref Expression
gsumzf1o  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )

Proof of Theorem gsumzf1o
Dummy variables  f 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
2 gsumzcl.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
3 gsumzcl.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
43gsumz 14474 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
51, 2, 4syl2anc 642 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
6 gsumzf1o.h . . . . . . . . 9  |-  ( ph  ->  H : C -1-1-onto-> A )
7 f1of1 5487 . . . . . . . . 9  |-  ( H : C -1-1-onto-> A  ->  H : C -1-1-> A )
86, 7syl 15 . . . . . . . 8  |-  ( ph  ->  H : C -1-1-> A
)
9 f1dmex 5767 . . . . . . . 8  |-  ( ( H : C -1-1-> A  /\  A  e.  V
)  ->  C  e.  _V )
108, 2, 9syl2anc 642 . . . . . . 7  |-  ( ph  ->  C  e.  _V )
113gsumz 14474 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  C  e.  _V )  ->  ( G  gsumg  ( x  e.  C  |->  .0.  ) )  =  .0.  )
121, 10, 11syl2anc 642 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( x  e.  C  |->  .0.  ) )  =  .0.  )
135, 12eqtr4d 2331 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( x  e.  C  |->  .0.  ) ) )
1413adantr 451 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( x  e.  C  |->  .0.  ) ) )
15 gsumzcl.f . . . . . 6  |-  ( ph  ->  F : A --> B )
16 ssid 3210 . . . . . . 7  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
1716a1i 10 . . . . . 6  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
1815, 17gsumcllem 15209 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
1918oveq2d 5890 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
20 f1of 5488 . . . . . . . . 9  |-  ( H : C -1-1-onto-> A  ->  H : C
--> A )
216, 20syl 15 . . . . . . . 8  |-  ( ph  ->  H : C --> A )
2221adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  H : C --> A )
23 ffvelrn 5679 . . . . . . 7  |-  ( ( H : C --> A  /\  x  e.  C )  ->  ( H `  x
)  e.  A )
2422, 23sylan 457 . . . . . 6  |-  ( ( ( ph  /\  ( `' F " ( _V 
\  {  .0.  }
) )  =  (/) )  /\  x  e.  C
)  ->  ( H `  x )  e.  A
)
2522feqmptd 5591 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  H  =  ( x  e.  C  |->  ( H `  x ) ) )
26 eqidd 2297 . . . . . 6  |-  ( k  =  ( H `  x )  ->  .0.  =  .0.  )
2724, 25, 18, 26fmptco 5707 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( F  o.  H )  =  ( x  e.  C  |->  .0.  ) )
2827oveq2d 5890 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  ( F  o.  H
) )  =  ( G  gsumg  ( x  e.  C  |->  .0.  ) ) )
2914, 19, 283eqtr4d 2338 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
3029ex 423 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H ) ) ) )
31 coass 5207 . . . . . . . . . . 11  |-  ( ( H  o.  `' H
)  o.  f )  =  ( H  o.  ( `' H  o.  f
) )
326adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  H : C -1-1-onto-> A
)
33 f1ococnv2 5516 . . . . . . . . . . . . . 14  |-  ( H : C -1-1-onto-> A  ->  ( H  o.  `' H )  =  (  _I  |`  A )
)
3432, 33syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( H  o.  `' H )  =  (  _I  |`  A )
)
3534coeq1d 4861 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( H  o.  `' H )  o.  f )  =  ( (  _I  |`  A )  o.  f ) )
36 f1of1 5487 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
3736ad2antll 709 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
38 cnvimass 5049 . . . . . . . . . . . . . . . 16  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
39 fdm 5409 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> B  ->  dom  F  =  A )
4015, 39syl 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  F  =  A )
4138, 40syl5sseq 3239 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  A )
4241adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
43 f1ss 5458 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
4437, 42, 43syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
45 f1f 5453 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) --> A )
46 fcoi2 5432 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> A  ->  ( (  _I  |`  A )  o.  f )  =  f )
4744, 45, 463syl 18 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (  _I  |`  A )  o.  f
)  =  f )
4835, 47eqtrd 2328 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( H  o.  `' H )  o.  f )  =  f )
4931, 48syl5reqr 2343 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f  =  ( H  o.  ( `' H  o.  f ) ) )
5049coeq2d 4862 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f )  =  ( F  o.  ( H  o.  ( `' H  o.  f ) ) ) )
51 coass 5207 . . . . . . . . 9  |-  ( ( F  o.  H )  o.  ( `' H  o.  f ) )  =  ( F  o.  ( H  o.  ( `' H  o.  f )
) )
5250, 51syl6eqr 2346 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f )  =  ( ( F  o.  H
)  o.  ( `' H  o.  f ) ) )
5352seqeq3d 11070 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  seq  1 ( ( +g  `  G
) ,  ( F  o.  f ) )  =  seq  1 ( ( +g  `  G
) ,  ( ( F  o.  H )  o.  ( `' H  o.  f ) ) ) )
5453fveq1d 5543 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (  seq  1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  =  (  seq  1
( ( +g  `  G
) ,  ( ( F  o.  H )  o.  ( `' H  o.  f ) ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
55 gsumzcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
56 eqid 2296 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
57 gsumzcl.z . . . . . . 7  |-  Z  =  (Cntz `  G )
581adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
592adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
6015adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
61 gsumzcl.c . . . . . . . 8  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
6261adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
63 simprl 732 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
64 f1ofo 5495 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
65 forn 5470 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
6664, 65syl 15 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
6766ad2antll 709 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
6816, 67syl5sseqr 3240 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  ran  f )
69 eqid 2296 . . . . . . 7  |-  ( `' ( F  o.  f
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( F  o.  f ) " ( _V  \  {  .0.  }
) )
7055, 3, 56, 57, 58, 59, 60, 62, 63, 44, 68, 69gsumval3 15207 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq  1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
7110adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  C  e.  _V )
72 fco 5414 . . . . . . . . 9  |-  ( ( F : A --> B  /\  H : C --> A )  ->  ( F  o.  H ) : C --> B )
7315, 21, 72syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( F  o.  H
) : C --> B )
7473adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  H ) : C --> B )
75 rncoss 4961 . . . . . . . . 9  |-  ran  ( F  o.  H )  C_ 
ran  F
7657cntzidss 14829 . . . . . . . . 9  |-  ( ( ran  F  C_  ( Z `  ran  F )  /\  ran  ( F  o.  H )  C_  ran  F )  ->  ran  ( F  o.  H
)  C_  ( Z `  ran  ( F  o.  H ) ) )
7761, 75, 76sylancl 643 . . . . . . . 8  |-  ( ph  ->  ran  ( F  o.  H )  C_  ( Z `  ran  ( F  o.  H ) ) )
7877adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  ( F  o.  H )  C_  ( Z `  ran  ( F  o.  H ) ) )
79 f1ocnv 5501 . . . . . . . . . 10  |-  ( H : C -1-1-onto-> A  ->  `' H : A -1-1-onto-> C )
80 f1of1 5487 . . . . . . . . . 10  |-  ( `' H : A -1-1-onto-> C  ->  `' H : A -1-1-> C
)
816, 79, 803syl 18 . . . . . . . . 9  |-  ( ph  ->  `' H : A -1-1-> C
)
8281adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  `' H : A -1-1-> C )
83 f1co 5462 . . . . . . . 8  |-  ( ( `' H : A -1-1-> C  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A )  ->  ( `' H  o.  f
) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> C )
8482, 44, 83syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' H  o.  f ) : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> C )
85 imass2 5065 . . . . . . . . 9  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  C_  ran  f  ->  ( `' H " ( `' F "
( _V  \  {  .0.  } ) ) ) 
C_  ( `' H " ran  f ) )
8668, 85syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' H " ( `' F "
( _V  \  {  .0.  } ) ) ) 
C_  ( `' H " ran  f ) )
87 cnvco 4881 . . . . . . . . . 10  |-  `' ( F  o.  H )  =  ( `' H  o.  `' F )
8887imaeq1i 5025 . . . . . . . . 9  |-  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  =  ( ( `' H  o.  `' F ) " ( _V  \  {  .0.  }
) )
89 imaco 5194 . . . . . . . . 9  |-  ( ( `' H  o.  `' F ) " ( _V  \  {  .0.  }
) )  =  ( `' H " ( `' F " ( _V 
\  {  .0.  }
) ) )
9088, 89eqtri 2316 . . . . . . . 8  |-  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  =  ( `' H " ( `' F " ( _V 
\  {  .0.  }
) ) )
91 rnco2 5196 . . . . . . . 8  |-  ran  ( `' H  o.  f
)  =  ( `' H " ran  f
)
9286, 90, 913sstr4g 3232 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' ( F  o.  H )
" ( _V  \  {  .0.  } ) ) 
C_  ran  ( `' H  o.  f )
)
93 eqid 2296 . . . . . . 7  |-  ( `' ( ( F  o.  H )  o.  ( `' H  o.  f
) ) " ( _V  \  {  .0.  }
) )  =  ( `' ( ( F  o.  H )  o.  ( `' H  o.  f ) ) "
( _V  \  {  .0.  } ) )
9455, 3, 56, 57, 58, 71, 74, 78, 63, 84, 92, 93gsumval3 15207 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  ( F  o.  H ) )  =  (  seq  1
( ( +g  `  G
) ,  ( ( F  o.  H )  o.  ( `' H  o.  f ) ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
9554, 70, 943eqtr4d 2338 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H ) ) )
9695expr 598 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) ) )
9796exlimdv 1626 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) ) )
9897expimpd 586 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H ) ) ) )
99 gsumzcl.w . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
100 fz1f1o 12199 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
10199, 100syl 15 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
10230, 98, 101mpjaod 370 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162    C_ wss 3165   (/)c0 3468   {csn 3653    e. cmpt 4093    _I cid 4320   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708    o. ccom 4709   -->wf 5267   -1-1->wf1 5268   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Fincfn 6879   1c1 8754   NNcn 9762   ...cfz 10798    seq cseq 11062   #chash 11353   Basecbs 13164   +g cplusg 13224   0gc0g 13416    gsumg cgsu 13417   Mndcmnd 14377  Cntzccntz 14807
This theorem is referenced by:  gsumf1o  15215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-0g 13420  df-gsum 13421  df-mnd 14383  df-cntz 14809
  Copyright terms: Public domain W3C validator