MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzmhm Structured version   Unicode version

Theorem gsumzmhm 15533
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gsumzmhm.b  |-  B  =  ( Base `  G
)
gsumzmhm.z  |-  Z  =  (Cntz `  G )
gsumzmhm.g  |-  ( ph  ->  G  e.  Mnd )
gsumzmhm.h  |-  ( ph  ->  H  e.  Mnd )
gsumzmhm.a  |-  ( ph  ->  A  e.  V )
gsumzmhm.k  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
gsumzmhm.f  |-  ( ph  ->  F : A --> B )
gsumzmhm.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzmhm.0  |-  .0.  =  ( 0g `  G )
gsumzmhm.w  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
Assertion
Ref Expression
gsumzmhm  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )

Proof of Theorem gsumzmhm
Dummy variables  k  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzmhm.h . . . . . . 7  |-  ( ph  ->  H  e.  Mnd )
2 gsumzmhm.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
3 eqid 2436 . . . . . . . 8  |-  ( 0g
`  H )  =  ( 0g `  H
)
43gsumz 14781 . . . . . . 7  |-  ( ( H  e.  Mnd  /\  A  e.  V )  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( 0g `  H
) )
51, 2, 4syl2anc 643 . . . . . 6  |-  ( ph  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( 0g `  H
) )
65adantr 452 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( 0g `  H
) )
7 gsumzmhm.k . . . . . . 7  |-  ( ph  ->  K  e.  ( G MndHom  H ) )
8 gsumzmhm.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
98, 3mhm0 14746 . . . . . . 7  |-  ( K  e.  ( G MndHom  H
)  ->  ( K `  .0.  )  =  ( 0g `  H ) )
107, 9syl 16 . . . . . 6  |-  ( ph  ->  ( K `  .0.  )  =  ( 0g `  H ) )
1110adantr 452 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K `  .0.  )  =  ( 0g `  H
) )
126, 11eqtr4d 2471 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) )  =  ( K `  .0.  ) )
13 gsumzmhm.g . . . . . . . . 9  |-  ( ph  ->  G  e.  Mnd )
14 gsumzmhm.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
1514, 8mndidcl 14714 . . . . . . . . 9  |-  ( G  e.  Mnd  ->  .0.  e.  B )
1613, 15syl 16 . . . . . . . 8  |-  ( ph  ->  .0.  e.  B )
1716ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  ( `' F " ( _V 
\  {  .0.  }
) )  =  (/) )  /\  k  e.  A
)  ->  .0.  e.  B )
18 gsumzmhm.f . . . . . . . 8  |-  ( ph  ->  F : A --> B )
19 ssid 3367 . . . . . . . . 9  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
2019a1i 11 . . . . . . . 8  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
2118, 20gsumcllem 15516 . . . . . . 7  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
22 eqid 2436 . . . . . . . . . . 11  |-  ( Base `  H )  =  (
Base `  H )
2314, 22mhmf 14743 . . . . . . . . . 10  |-  ( K  e.  ( G MndHom  H
)  ->  K : B
--> ( Base `  H
) )
247, 23syl 16 . . . . . . . . 9  |-  ( ph  ->  K : B --> ( Base `  H ) )
2524feqmptd 5779 . . . . . . . 8  |-  ( ph  ->  K  =  ( x  e.  B  |->  ( K `
 x ) ) )
2625adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  K  =  ( x  e.  B  |->  ( K `  x ) ) )
27 fveq2 5728 . . . . . . 7  |-  ( x  =  .0.  ->  ( K `  x )  =  ( K `  .0.  ) )
2817, 21, 26, 27fmptco 5901 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K  o.  F )  =  ( k  e.  A  |->  ( K `  .0.  ) ) )
2910mpteq2dv 4296 . . . . . . 7  |-  ( ph  ->  ( k  e.  A  |->  ( K `  .0.  ) )  =  ( k  e.  A  |->  ( 0g `  H ) ) )
3029adantr 452 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  (
k  e.  A  |->  ( K `  .0.  )
)  =  ( k  e.  A  |->  ( 0g
`  H ) ) )
3128, 30eqtrd 2468 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K  o.  F )  =  ( k  e.  A  |->  ( 0g `  H ) ) )
3231oveq2d 6097 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( H  gsumg  ( k  e.  A  |->  ( 0g `  H
) ) ) )
3321oveq2d 6097 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
348gsumz 14781 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
3513, 2, 34syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
3635adantr 452 . . . . . 6  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
3733, 36eqtrd 2468 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  .0.  )
3837fveq2d 5732 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  .0.  )
)
3912, 32, 383eqtr4d 2478 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
4039ex 424 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) ) )
4113adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
42 eqid 2436 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
4314, 42mndcl 14695 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
44433expb 1154 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
4541, 44sylan 458 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  G ) y )  e.  B )
4618adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
47 f1of1 5673 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
4847ad2antll 710 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
49 cnvimass 5224 . . . . . . . . . . . 12  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
50 fdm 5595 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  dom  F  =  A )
5146, 50syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  dom  F  =  A )
5249, 51syl5sseq 3396 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
53 f1ss 5644 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
5448, 52, 53syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
55 f1f 5639 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) --> A )
5654, 55syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )
57 fco 5600 . . . . . . . . 9  |-  ( ( F : A --> B  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> A )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> B )
5846, 56, 57syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> B )
5958ffvelrnda 5870 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( F  o.  f
) `  x )  e.  B )
60 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
61 nnuz 10521 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
6260, 61syl6eleq 2526 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ZZ>= `  1 )
)
637adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  K  e.  ( G MndHom  H ) )
64 eqid 2436 . . . . . . . . . 10  |-  ( +g  `  H )  =  ( +g  `  H )
6514, 42, 64mhmlin 14745 . . . . . . . . 9  |-  ( ( K  e.  ( G MndHom  H )  /\  x  e.  B  /\  y  e.  B )  ->  ( K `  ( x
( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H ) ( K `
 y ) ) )
66653expb 1154 . . . . . . . 8  |-  ( ( K  e.  ( G MndHom  H )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( K `  ( x ( +g  `  G ) y ) )  =  ( ( K `  x ) ( +g  `  H
) ( K `  y ) ) )
6763, 66sylan 458 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( K `  (
x ( +g  `  G
) y ) )  =  ( ( K `
 x ) ( +g  `  H ) ( K `  y
) ) )
68 coass 5388 . . . . . . . . 9  |-  ( ( K  o.  F )  o.  f )  =  ( K  o.  ( F  o.  f )
)
6968fveq1i 5729 . . . . . . . 8  |-  ( ( ( K  o.  F
)  o.  f ) `
 x )  =  ( ( K  o.  ( F  o.  f
) ) `  x
)
70 fvco3 5800 . . . . . . . . 9  |-  ( ( ( F  o.  f
) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> B  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( K  o.  ( F  o.  f )
) `  x )  =  ( K `  ( ( F  o.  f ) `  x
) ) )
7158, 70sylan 458 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( K  o.  ( F  o.  f )
) `  x )  =  ( K `  ( ( F  o.  f ) `  x
) ) )
7269, 71syl5req 2481 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  ( K `  ( ( F  o.  f ) `  x ) )  =  ( ( ( K  o.  F )  o.  f ) `  x
) )
7345, 59, 62, 67, 72seqhomo 11370 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  (  seq  1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  =  (  seq  1 ( ( +g  `  H ) ,  ( ( K  o.  F
)  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
74 gsumzmhm.z . . . . . . . 8  |-  Z  =  (Cntz `  G )
752adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
76 gsumzmhm.c . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
7776adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
7819a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
79 f1ofo 5681 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
80 forn 5656 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
8179, 80syl 16 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
8281ad2antll 710 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
8378, 82sseqtr4d 3385 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  ran  f )
84 eqid 2436 . . . . . . . 8  |-  ( `' ( F  o.  f
) " ( _V 
\  {  .0.  }
) )  =  ( `' ( F  o.  f ) " ( _V  \  {  .0.  }
) )
8514, 8, 42, 74, 41, 75, 46, 77, 60, 54, 83, 84gsumval3 15514 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq  1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
8685fveq2d 5732 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  ( G  gsumg  F ) )  =  ( K `  (  seq  1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) )
87 eqid 2436 . . . . . . 7  |-  (Cntz `  H )  =  (Cntz `  H )
881adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  H  e.  Mnd )
8924adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  K : B --> ( Base `  H )
)
90 fco 5600 . . . . . . . 8  |-  ( ( K : B --> ( Base `  H )  /\  F : A --> B )  -> 
( K  o.  F
) : A --> ( Base `  H ) )
9189, 46, 90syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K  o.  F ) : A --> ( Base `  H )
)
9274, 87cntzmhm2 15138 . . . . . . . . 9  |-  ( ( K  e.  ( G MndHom  H )  /\  ran  F 
C_  ( Z `  ran  F ) )  -> 
( K " ran  F )  C_  ( (Cntz `  H ) `  ( K " ran  F ) ) )
9363, 77, 92syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K " ran  F )  C_  (
(Cntz `  H ) `  ( K " ran  F ) ) )
94 rnco2 5377 . . . . . . . 8  |-  ran  ( K  o.  F )  =  ( K " ran  F )
9594fveq2i 5731 . . . . . . . 8  |-  ( (Cntz `  H ) `  ran  ( K  o.  F
) )  =  ( (Cntz `  H ) `  ( K " ran  F ) )
9693, 94, 953sstr4g 3389 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  ( K  o.  F )  C_  (
(Cntz `  H ) `  ran  ( K  o.  F ) ) )
97 eldifi 3469 . . . . . . . . . . 11  |-  ( x  e.  ( A  \ 
( `' F "
( _V  \  {  .0.  } ) ) )  ->  x  e.  A
)
98 fvco3 5800 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( K  o.  F ) `  x
)  =  ( K `
 ( F `  x ) ) )
9946, 97, 98syl2an 464 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) `  x )  =  ( K `  ( F `
 x ) ) )
10046, 78suppssr 5864 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F `  x )  =  .0.  )
101100fveq2d 5732 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  ( F `  x ) )  =  ( K `
 .0.  ) )
10210ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( K `  .0.  )  =  ( 0g `  H ) )
10399, 101, 1023eqtrd 2472 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( K  o.  F ) `  x )  =  ( 0g `  H ) )
10491, 103suppss 5863 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' ( K  o.  F )
" ( _V  \  { ( 0g `  H ) } ) )  C_  ( `' F " ( _V  \  {  .0.  } ) ) )
105104, 82sseqtr4d 3385 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' ( K  o.  F )
" ( _V  \  { ( 0g `  H ) } ) )  C_  ran  f )
106 eqid 2436 . . . . . . 7  |-  ( `' ( ( K  o.  F )  o.  f
) " ( _V 
\  { ( 0g
`  H ) } ) )  =  ( `' ( ( K  o.  F )  o.  f ) " ( _V  \  { ( 0g
`  H ) } ) )
10722, 3, 64, 87, 88, 75, 91, 96, 60, 54, 105, 106gsumval3 15514 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( H  gsumg  ( K  o.  F ) )  =  (  seq  1
( ( +g  `  H
) ,  ( ( K  o.  F )  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
10873, 86, 1073eqtr4rd 2479 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
109108expr 599 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) ) )
110109exlimdv 1646 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) ) )
111110expimpd 587 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) ) )
112 gsumzmhm.w . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
113 fz1f1o 12504 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
114112, 113syl 16 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
11540, 111, 114mpjaod 371 1  |-  ( ph  ->  ( H  gsumg  ( K  o.  F
) )  =  ( K `  ( G 
gsumg  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   _Vcvv 2956    \ cdif 3317    C_ wss 3320   (/)c0 3628   {csn 3814    e. cmpt 4266   `'ccnv 4877   dom cdm 4878   ran crn 4879   "cima 4881    o. ccom 4882   -->wf 5450   -1-1->wf1 5451   -onto->wfo 5452   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081   Fincfn 7109   1c1 8991   NNcn 10000   ZZ>=cuz 10488   ...cfz 11043    seq cseq 11323   #chash 11618   Basecbs 13469   +g cplusg 13529   0gc0g 13723    gsumg cgsu 13724   Mndcmnd 14684   MndHom cmhm 14736  Cntzccntz 15114
This theorem is referenced by:  gsummhm  15534  gsumzinv  15540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-fzo 11136  df-seq 11324  df-hash 11619  df-0g 13727  df-gsum 13728  df-mnd 14690  df-mhm 14738  df-cntz 15116
  Copyright terms: Public domain W3C validator