MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gxcom Unicode version

Theorem gxcom 21706
Description: The group power operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
gxcom.1  |-  X  =  ran  G
gxcom.2  |-  P  =  ( ^g `  G
)
Assertion
Ref Expression
gxcom  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  (
( A P K ) G A )  =  ( A G ( A P K ) ) )

Proof of Theorem gxcom
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6029 . . . . 5  |-  ( m  =  0  ->  ( A P m )  =  ( A P 0 ) )
21oveq1d 6036 . . . 4  |-  ( m  =  0  ->  (
( A P m ) G A )  =  ( ( A P 0 ) G A ) )
31oveq2d 6037 . . . 4  |-  ( m  =  0  ->  ( A G ( A P m ) )  =  ( A G ( A P 0 ) ) )
42, 3eqeq12d 2402 . . 3  |-  ( m  =  0  ->  (
( ( A P m ) G A )  =  ( A G ( A P m ) )  <->  ( ( A P 0 ) G A )  =  ( A G ( A P 0 ) ) ) )
5 oveq2 6029 . . . . 5  |-  ( m  =  k  ->  ( A P m )  =  ( A P k ) )
65oveq1d 6036 . . . 4  |-  ( m  =  k  ->  (
( A P m ) G A )  =  ( ( A P k ) G A ) )
75oveq2d 6037 . . . 4  |-  ( m  =  k  ->  ( A G ( A P m ) )  =  ( A G ( A P k ) ) )
86, 7eqeq12d 2402 . . 3  |-  ( m  =  k  ->  (
( ( A P m ) G A )  =  ( A G ( A P m ) )  <->  ( ( A P k ) G A )  =  ( A G ( A P k ) ) ) )
9 oveq2 6029 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  ( A P m )  =  ( A P ( k  +  1 ) ) )
109oveq1d 6036 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( A P m ) G A )  =  ( ( A P ( k  +  1 ) ) G A ) )
119oveq2d 6037 . . . 4  |-  ( m  =  ( k  +  1 )  ->  ( A G ( A P m ) )  =  ( A G ( A P ( k  +  1 ) ) ) )
1210, 11eqeq12d 2402 . . 3  |-  ( m  =  ( k  +  1 )  ->  (
( ( A P m ) G A )  =  ( A G ( A P m ) )  <->  ( ( A P ( k  +  1 ) ) G A )  =  ( A G ( A P ( k  +  1 ) ) ) ) )
13 oveq2 6029 . . . . 5  |-  ( m  =  -u k  ->  ( A P m )  =  ( A P -u k ) )
1413oveq1d 6036 . . . 4  |-  ( m  =  -u k  ->  (
( A P m ) G A )  =  ( ( A P -u k ) G A ) )
1513oveq2d 6037 . . . 4  |-  ( m  =  -u k  ->  ( A G ( A P m ) )  =  ( A G ( A P -u k
) ) )
1614, 15eqeq12d 2402 . . 3  |-  ( m  =  -u k  ->  (
( ( A P m ) G A )  =  ( A G ( A P m ) )  <->  ( ( A P -u k ) G A )  =  ( A G ( A P -u k
) ) ) )
17 oveq2 6029 . . . . 5  |-  ( m  =  K  ->  ( A P m )  =  ( A P K ) )
1817oveq1d 6036 . . . 4  |-  ( m  =  K  ->  (
( A P m ) G A )  =  ( ( A P K ) G A ) )
1917oveq2d 6037 . . . 4  |-  ( m  =  K  ->  ( A G ( A P m ) )  =  ( A G ( A P K ) ) )
2018, 19eqeq12d 2402 . . 3  |-  ( m  =  K  ->  (
( ( A P m ) G A )  =  ( A G ( A P m ) )  <->  ( ( A P K ) G A )  =  ( A G ( A P K ) ) ) )
21 gxcom.1 . . . . 5  |-  X  =  ran  G
22 eqid 2388 . . . . 5  |-  (GId `  G )  =  (GId
`  G )
2321, 22grpolid 21656 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
(GId `  G ) G A )  =  A )
24 gxcom.2 . . . . . 6  |-  P  =  ( ^g `  G
)
2521, 22, 24gx0 21698 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A P 0 )  =  (GId `  G )
)
2625oveq1d 6036 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( A P 0 ) G A )  =  ( (GId `  G ) G A ) )
2725oveq2d 6037 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G ( A P 0 ) )  =  ( A G (GId
`  G ) ) )
2821, 22grporid 21657 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G (GId `  G
) )  =  A )
2927, 28eqtrd 2420 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G ( A P 0 ) )  =  A )
3023, 26, 293eqtr4d 2430 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( A P 0 ) G A )  =  ( A G ( A P 0 ) ) )
31 nn0z 10237 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  ZZ )
32 simp1 957 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  G  e.  GrpOp )
33 simp2 958 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  A  e.  X )
3421, 24gxcl 21702 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  ( A P k )  e.  X )
3521grpoass 21640 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  ( A P k )  e.  X  /\  A  e.  X ) )  -> 
( ( A G ( A P k ) ) G A )  =  ( A G ( ( A P k ) G A ) ) )
3632, 33, 34, 33, 35syl13anc 1186 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  (
( A G ( A P k ) ) G A )  =  ( A G ( ( A P k ) G A ) ) )
3731, 36syl3an3 1219 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  ->  (
( A G ( A P k ) ) G A )  =  ( A G ( ( A P k ) G A ) ) )
3837adantr 452 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( A G ( A P k ) ) G A )  =  ( A G ( ( A P k ) G A ) ) )
3921, 24gxnn0suc 21701 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  ->  ( A P ( k  +  1 ) )  =  ( ( A P k ) G A ) )
4039eqeq1d 2396 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  ->  (
( A P ( k  +  1 ) )  =  ( A G ( A P k ) )  <->  ( ( A P k ) G A )  =  ( A G ( A P k ) ) ) )
4140biimpar 472 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( A P ( k  +  1 ) )  =  ( A G ( A P k ) ) )
4241oveq1d 6036 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( A P ( k  +  1 ) ) G A )  =  ( ( A G ( A P k ) ) G A ) )
4339oveq2d 6037 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  ->  ( A G ( A P ( k  +  1 ) ) )  =  ( A G ( ( A P k ) G A ) ) )
4443adantr 452 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( A G ( A P ( k  +  1 ) ) )  =  ( A G ( ( A P k ) G A ) ) )
4538, 42, 443eqtr4d 2430 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( A P ( k  +  1 ) ) G A )  =  ( A G ( A P ( k  +  1 ) ) ) )
4645ex 424 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  NN0 )  ->  (
( ( A P k ) G A )  =  ( A G ( A P k ) )  -> 
( ( A P ( k  +  1 ) ) G A )  =  ( A G ( A P ( k  +  1 ) ) ) ) )
47463expia 1155 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
k  e.  NN0  ->  ( ( ( A P k ) G A )  =  ( A G ( A P k ) )  -> 
( ( A P ( k  +  1 ) ) G A )  =  ( A G ( A P ( k  +  1 ) ) ) ) ) )
48 nnz 10236 . . . 4  |-  ( k  e.  NN  ->  k  e.  ZZ )
49 simpl1 960 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  G  e.  GrpOp )
50 simpl2 961 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  A  e.  X
)
51 znegcl 10246 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  -u k  e.  ZZ )
5221, 24gxcl 21702 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  -u k  e.  ZZ )  ->  ( A P -u k )  e.  X )
5351, 52syl3an3 1219 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  ( A P -u k )  e.  X )
5453adantr 452 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( A P
-u k )  e.  X )
55 eqid 2388 . . . . . . . . . . . 12  |-  ( inv `  G )  =  ( inv `  G )
5621, 55grpoinvcl 21663 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( inv `  G
) `  A )  e.  X )
5749, 50, 56syl2anc 643 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( inv `  G ) `  A
)  e.  X )
5821grpoass 21640 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  ( A P -u k
)  e.  X  /\  ( ( inv `  G
) `  A )  e.  X ) )  -> 
( ( A G ( A P -u k ) ) G ( ( inv `  G
) `  A )
)  =  ( A G ( ( A P -u k ) G ( ( inv `  G ) `  A
) ) ) )
5949, 50, 54, 57, 58syl13anc 1186 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( A G ( A P
-u k ) ) G ( ( inv `  G ) `  A
) )  =  ( A G ( ( A P -u k
) G ( ( inv `  G ) `
 A ) ) ) )
6021, 55, 24gxneg 21703 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  ( A P -u k )  =  ( ( inv `  G ) `  ( A P k ) ) )
6160adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( A P
-u k )  =  ( ( inv `  G
) `  ( A P k ) ) )
6261oveq1d 6036 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( A P -u k ) G ( ( inv `  G ) `  A
) )  =  ( ( ( inv `  G
) `  ( A P k ) ) G ( ( inv `  G ) `  A
) ) )
6334adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( A P k )  e.  X
)
6421, 55grpoinvop 21678 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( A P k )  e.  X )  ->  (
( inv `  G
) `  ( A G ( A P k ) ) )  =  ( ( ( inv `  G ) `
 ( A P k ) ) G ( ( inv `  G
) `  A )
) )
6549, 50, 63, 64syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( inv `  G ) `  ( A G ( A P k ) ) )  =  ( ( ( inv `  G ) `
 ( A P k ) ) G ( ( inv `  G
) `  A )
) )
6661oveq2d 6037 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( ( inv `  G ) `
 A ) G ( A P -u k ) )  =  ( ( ( inv `  G ) `  A
) G ( ( inv `  G ) `
 ( A P k ) ) ) )
6721, 55grpoinvop 21678 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  ( A P k )  e.  X  /\  A  e.  X )  ->  (
( inv `  G
) `  ( ( A P k ) G A ) )  =  ( ( ( inv `  G ) `  A
) G ( ( inv `  G ) `
 ( A P k ) ) ) )
6849, 63, 50, 67syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( inv `  G ) `  (
( A P k ) G A ) )  =  ( ( ( inv `  G
) `  A ) G ( ( inv `  G ) `  ( A P k ) ) ) )
69 fveq2 5669 . . . . . . . . . . . . . 14  |-  ( ( ( A P k ) G A )  =  ( A G ( A P k ) )  ->  (
( inv `  G
) `  ( ( A P k ) G A ) )  =  ( ( inv `  G
) `  ( A G ( A P k ) ) ) )
7069adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( inv `  G ) `  (
( A P k ) G A ) )  =  ( ( inv `  G ) `
 ( A G ( A P k ) ) ) )
7166, 68, 703eqtr2rd 2427 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( inv `  G ) `  ( A G ( A P k ) ) )  =  ( ( ( inv `  G ) `
 A ) G ( A P -u k ) ) )
7262, 65, 713eqtr2d 2426 . . . . . . . . . . 11  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( A P -u k ) G ( ( inv `  G ) `  A
) )  =  ( ( ( inv `  G
) `  A ) G ( A P
-u k ) ) )
7372oveq2d 6037 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( A G ( ( A P
-u k ) G ( ( inv `  G
) `  A )
) )  =  ( A G ( ( ( inv `  G
) `  A ) G ( A P
-u k ) ) ) )
7421, 55grpoasscan1 21674 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( A P -u k )  e.  X )  -> 
( A G ( ( ( inv `  G
) `  A ) G ( A P
-u k ) ) )  =  ( A P -u k ) )
7549, 50, 54, 74syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( A G ( ( ( inv `  G ) `  A
) G ( A P -u k ) ) )  =  ( A P -u k
) )
7673, 75eqtrd 2420 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( A G ( ( A P
-u k ) G ( ( inv `  G
) `  A )
) )  =  ( A P -u k
) )
7759, 76eqtrd 2420 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( A G ( A P
-u k ) ) G ( ( inv `  G ) `  A
) )  =  ( A P -u k
) )
7877oveq1d 6036 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( ( A G ( A P -u k ) ) G ( ( inv `  G ) `
 A ) ) G A )  =  ( ( A P
-u k ) G A ) )
7921grpocl 21637 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( A P -u k )  e.  X )  -> 
( A G ( A P -u k
) )  e.  X
)
8049, 50, 54, 79syl3anc 1184 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( A G ( A P -u k ) )  e.  X )
8121, 55grpoasscan2 21675 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( A G ( A P
-u k ) )  e.  X  /\  A  e.  X )  ->  (
( ( A G ( A P -u k ) ) G ( ( inv `  G
) `  A )
) G A )  =  ( A G ( A P -u k ) ) )
8249, 80, 50, 81syl3anc 1184 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( ( A G ( A P -u k ) ) G ( ( inv `  G ) `
 A ) ) G A )  =  ( A G ( A P -u k
) ) )
8378, 82eqtr3d 2422 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  /\  ( ( A P k ) G A )  =  ( A G ( A P k ) ) )  ->  ( ( A P -u k ) G A )  =  ( A G ( A P -u k
) ) )
8483ex 424 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  (
( ( A P k ) G A )  =  ( A G ( A P k ) )  -> 
( ( A P
-u k ) G A )  =  ( A G ( A P -u k ) ) ) )
85843expia 1155 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
k  e.  ZZ  ->  ( ( ( A P k ) G A )  =  ( A G ( A P k ) )  -> 
( ( A P
-u k ) G A )  =  ( A G ( A P -u k ) ) ) ) )
8648, 85syl5 30 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
k  e.  NN  ->  ( ( ( A P k ) G A )  =  ( A G ( A P k ) )  -> 
( ( A P
-u k ) G A )  =  ( A G ( A P -u k ) ) ) ) )
874, 8, 12, 16, 20, 30, 47, 86zindd 10304 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( K  e.  ZZ  ->  ( ( A P K ) G A )  =  ( A G ( A P K ) ) ) )
88873impia 1150 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  (
( A P K ) G A )  =  ( A G ( A P K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   ran crn 4820   ` cfv 5395  (class class class)co 6021   0cc0 8924   1c1 8925    + caddc 8927   -ucneg 9225   NNcn 9933   NN0cn0 10154   ZZcz 10215   GrpOpcgr 21623  GIdcgi 21624   invcgn 21625   ^gcgx 21627
This theorem is referenced by:  gxinv  21707  gxsuc  21709
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-n0 10155  df-z 10216  df-uz 10422  df-seq 11252  df-grpo 21628  df-gid 21629  df-ginv 21630  df-gx 21632
  Copyright terms: Public domain W3C validator