MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gxdi Unicode version

Theorem gxdi 20963
Description: Distribution of group power over group operation for abelian groups. (Contributed by Paul Chapman, 17-Apr-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
gxdi.1  |-  X  =  ran  G
gxdi.2  |-  P  =  ( ^g `  G
)
Assertion
Ref Expression
gxdi  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  K  e.  ZZ )  ->  ( ( A G B ) P K )  =  ( ( A P K ) G ( B P K ) ) )

Proof of Theorem gxdi
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5866 . . . . 5  |-  ( m  =  0  ->  (
( A G B ) P m )  =  ( ( A G B ) P 0 ) )
2 oveq2 5866 . . . . . 6  |-  ( m  =  0  ->  ( A P m )  =  ( A P 0 ) )
3 oveq2 5866 . . . . . 6  |-  ( m  =  0  ->  ( B P m )  =  ( B P 0 ) )
42, 3oveq12d 5876 . . . . 5  |-  ( m  =  0  ->  (
( A P m ) G ( B P m ) )  =  ( ( A P 0 ) G ( B P 0 ) ) )
51, 4eqeq12d 2297 . . . 4  |-  ( m  =  0  ->  (
( ( A G B ) P m )  =  ( ( A P m ) G ( B P m ) )  <->  ( ( A G B ) P 0 )  =  ( ( A P 0 ) G ( B P 0 ) ) ) )
6 oveq2 5866 . . . . 5  |-  ( m  =  k  ->  (
( A G B ) P m )  =  ( ( A G B ) P k ) )
7 oveq2 5866 . . . . . 6  |-  ( m  =  k  ->  ( A P m )  =  ( A P k ) )
8 oveq2 5866 . . . . . 6  |-  ( m  =  k  ->  ( B P m )  =  ( B P k ) )
97, 8oveq12d 5876 . . . . 5  |-  ( m  =  k  ->  (
( A P m ) G ( B P m ) )  =  ( ( A P k ) G ( B P k ) ) )
106, 9eqeq12d 2297 . . . 4  |-  ( m  =  k  ->  (
( ( A G B ) P m )  =  ( ( A P m ) G ( B P m ) )  <->  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) ) )
11 oveq2 5866 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( A G B ) P m )  =  ( ( A G B ) P ( k  +  1 ) ) )
12 oveq2 5866 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  ( A P m )  =  ( A P ( k  +  1 ) ) )
13 oveq2 5866 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  ( B P m )  =  ( B P ( k  +  1 ) ) )
1412, 13oveq12d 5876 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( A P m ) G ( B P m ) )  =  ( ( A P ( k  +  1 ) ) G ( B P ( k  +  1 ) ) ) )
1511, 14eqeq12d 2297 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( ( A G B ) P m )  =  ( ( A P m ) G ( B P m ) )  <->  ( ( A G B ) P ( k  +  1 ) )  =  ( ( A P ( k  +  1 ) ) G ( B P ( k  +  1 ) ) ) ) )
16 oveq2 5866 . . . . 5  |-  ( m  =  -u k  ->  (
( A G B ) P m )  =  ( ( A G B ) P
-u k ) )
17 oveq2 5866 . . . . . 6  |-  ( m  =  -u k  ->  ( A P m )  =  ( A P -u k ) )
18 oveq2 5866 . . . . . 6  |-  ( m  =  -u k  ->  ( B P m )  =  ( B P -u k ) )
1917, 18oveq12d 5876 . . . . 5  |-  ( m  =  -u k  ->  (
( A P m ) G ( B P m ) )  =  ( ( A P -u k ) G ( B P
-u k ) ) )
2016, 19eqeq12d 2297 . . . 4  |-  ( m  =  -u k  ->  (
( ( A G B ) P m )  =  ( ( A P m ) G ( B P m ) )  <->  ( ( A G B ) P
-u k )  =  ( ( A P
-u k ) G ( B P -u k ) ) ) )
21 oveq2 5866 . . . . 5  |-  ( m  =  K  ->  (
( A G B ) P m )  =  ( ( A G B ) P K ) )
22 oveq2 5866 . . . . . 6  |-  ( m  =  K  ->  ( A P m )  =  ( A P K ) )
23 oveq2 5866 . . . . . 6  |-  ( m  =  K  ->  ( B P m )  =  ( B P K ) )
2422, 23oveq12d 5876 . . . . 5  |-  ( m  =  K  ->  (
( A P m ) G ( B P m ) )  =  ( ( A P K ) G ( B P K ) ) )
2521, 24eqeq12d 2297 . . . 4  |-  ( m  =  K  ->  (
( ( A G B ) P m )  =  ( ( A P m ) G ( B P m ) )  <->  ( ( A G B ) P K )  =  ( ( A P K ) G ( B P K ) ) ) )
26 ablogrpo 20951 . . . . . . . 8  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
27263ad2ant1 976 . . . . . . 7  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  G  e.  GrpOp )
28 gxdi.1 . . . . . . . . 9  |-  X  =  ran  G
2928grpocl 20867 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
3026, 29syl3an1 1215 . . . . . . 7  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
31 eqid 2283 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
32 gxdi.2 . . . . . . . 8  |-  P  =  ( ^g `  G
)
3328, 31, 32gx0 20928 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( A G B )  e.  X )  ->  (
( A G B ) P 0 )  =  (GId `  G
) )
3427, 30, 33syl2anc 642 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G B ) P 0 )  =  (GId `  G
) )
3528, 31grpoidcl 20884 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  (GId `  G
)  e.  X )
3627, 35syl 15 . . . . . . 7  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (GId `  G )  e.  X
)
3728, 31grpolid 20886 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  (GId `  G )  e.  X
)  ->  ( (GId `  G ) G (GId
`  G ) )  =  (GId `  G
) )
3827, 36, 37syl2anc 642 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (
(GId `  G ) G (GId `  G )
)  =  (GId `  G ) )
3934, 38eqtr4d 2318 . . . . 5  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G B ) P 0 )  =  ( (GId `  G ) G (GId
`  G ) ) )
40 simp2 956 . . . . . . 7  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
4128, 31, 32gx0 20928 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A P 0 )  =  (GId `  G )
)
4227, 40, 41syl2anc 642 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A P 0 )  =  (GId `  G )
)
43 simp3 957 . . . . . . 7  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
4428, 31, 32gx0 20928 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( B P 0 )  =  (GId `  G )
)
4527, 43, 44syl2anc 642 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  ( B P 0 )  =  (GId `  G )
)
4642, 45oveq12d 5876 . . . . 5  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A P 0 ) G ( B P 0 ) )  =  ( (GId `  G ) G (GId
`  G ) ) )
4739, 46eqtr4d 2318 . . . 4  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G B ) P 0 )  =  ( ( A P 0 ) G ( B P 0 ) ) )
48 nn0z 10046 . . . . 5  |-  ( k  e.  NN0  ->  k  e.  ZZ )
49273ad2ant1 976 . . . . . . . . 9  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  G  e.  GrpOp )
50303ad2ant1 976 . . . . . . . . 9  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( A G B )  e.  X
)
51 simp2 956 . . . . . . . . 9  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  k  e.  ZZ )
5228, 32gxsuc 20939 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( A G B )  e.  X  /\  k  e.  ZZ )  ->  (
( A G B ) P ( k  +  1 ) )  =  ( ( ( A G B ) P k ) G ( A G B ) ) )
5349, 50, 51, 52syl3anc 1182 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A G B ) P ( k  +  1 ) )  =  ( ( ( A G B ) P k ) G ( A G B ) ) )
54 oveq1 5865 . . . . . . . . 9  |-  ( ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) )  ->  (
( ( A G B ) P k ) G ( A G B ) )  =  ( ( ( A P k ) G ( B P k ) ) G ( A G B ) ) )
55543ad2ant3 978 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( ( A G B ) P k ) G ( A G B ) )  =  ( ( ( A P k ) G ( B P k ) ) G ( A G B ) ) )
56 simp11 985 . . . . . . . . 9  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  G  e.  AbelOp )
57403ad2ant1 976 . . . . . . . . . 10  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  A  e.  X
)
5828, 32gxcl 20932 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  ( A P k )  e.  X )
5949, 57, 51, 58syl3anc 1182 . . . . . . . . 9  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( A P k )  e.  X
)
60433ad2ant1 976 . . . . . . . . . 10  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  B  e.  X
)
6128, 32gxcl 20932 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  k  e.  ZZ )  ->  ( B P k )  e.  X )
6249, 60, 51, 61syl3anc 1182 . . . . . . . . 9  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( B P k )  e.  X
)
6328ablo4 20954 . . . . . . . . 9  |-  ( ( G  e.  AbelOp  /\  (
( A P k )  e.  X  /\  ( B P k )  e.  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( A P k ) G ( B P k ) ) G ( A G B ) )  =  ( ( ( A P k ) G A ) G ( ( B P k ) G B ) ) )
6456, 59, 62, 57, 60, 63syl122anc 1191 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( ( A P k ) G ( B P k ) ) G ( A G B ) )  =  ( ( ( A P k ) G A ) G ( ( B P k ) G B ) ) )
6553, 55, 643eqtrd 2319 . . . . . . 7  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A G B ) P ( k  +  1 ) )  =  ( ( ( A P k ) G A ) G ( ( B P k ) G B ) ) )
6628, 32gxsuc 20939 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  ( A P ( k  +  1 ) )  =  ( ( A P k ) G A ) )
6749, 57, 51, 66syl3anc 1182 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( A P ( k  +  1 ) )  =  ( ( A P k ) G A ) )
6828, 32gxsuc 20939 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  k  e.  ZZ )  ->  ( B P ( k  +  1 ) )  =  ( ( B P k ) G B ) )
6949, 60, 51, 68syl3anc 1182 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( B P ( k  +  1 ) )  =  ( ( B P k ) G B ) )
7067, 69oveq12d 5876 . . . . . . 7  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A P ( k  +  1 ) ) G ( B P ( k  +  1 ) ) )  =  ( ( ( A P k ) G A ) G ( ( B P k ) G B ) ) )
7165, 70eqtr4d 2318 . . . . . 6  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A G B ) P ( k  +  1 ) )  =  ( ( A P ( k  +  1 ) ) G ( B P ( k  +  1 ) ) ) )
72713exp 1150 . . . . 5  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (
k  e.  ZZ  ->  ( ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) )  -> 
( ( A G B ) P ( k  +  1 ) )  =  ( ( A P ( k  +  1 ) ) G ( B P ( k  +  1 ) ) ) ) ) )
7348, 72syl5 28 . . . 4  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (
k  e.  NN0  ->  ( ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) )  -> 
( ( A G B ) P ( k  +  1 ) )  =  ( ( A P ( k  +  1 ) ) G ( B P ( k  +  1 ) ) ) ) ) )
74 nnz 10045 . . . . 5  |-  ( k  e.  NN  ->  k  e.  ZZ )
75 eqid 2283 . . . . . . . . . 10  |-  ( inv `  G )  =  ( inv `  G )
7628, 75, 32gxneg 20933 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( A G B )  e.  X  /\  k  e.  ZZ )  ->  (
( A G B ) P -u k
)  =  ( ( inv `  G ) `
 ( ( A G B ) P k ) ) )
7749, 50, 51, 76syl3anc 1182 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A G B ) P
-u k )  =  ( ( inv `  G
) `  ( ( A G B ) P k ) ) )
7828ablocom 20952 . . . . . . . . . . 11  |-  ( ( G  e.  AbelOp  /\  ( A P k )  e.  X  /\  ( B P k )  e.  X )  ->  (
( A P k ) G ( B P k ) )  =  ( ( B P k ) G ( A P k ) ) )
7956, 59, 62, 78syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A P k ) G ( B P k ) )  =  ( ( B P k ) G ( A P k ) ) )
80 eqeq1 2289 . . . . . . . . . . 11  |-  ( ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) )  ->  (
( ( A G B ) P k )  =  ( ( B P k ) G ( A P k ) )  <->  ( ( A P k ) G ( B P k ) )  =  ( ( B P k ) G ( A P k ) ) ) )
81803ad2ant3 978 . . . . . . . . . 10  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( ( A G B ) P k )  =  ( ( B P k ) G ( A P k ) )  <->  ( ( A P k ) G ( B P k ) )  =  ( ( B P k ) G ( A P k ) ) ) )
8279, 81mpbird 223 . . . . . . . . 9  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A G B ) P k )  =  ( ( B P k ) G ( A P k ) ) )
8382fveq2d 5529 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( inv `  G ) `  (
( A G B ) P k ) )  =  ( ( inv `  G ) `
 ( ( B P k ) G ( A P k ) ) ) )
8428, 75grpoinvop 20908 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( B P k )  e.  X  /\  ( A P k )  e.  X )  ->  (
( inv `  G
) `  ( ( B P k ) G ( A P k ) ) )  =  ( ( ( inv `  G ) `  ( A P k ) ) G ( ( inv `  G ) `  ( B P k ) ) ) )
8549, 62, 59, 84syl3anc 1182 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( inv `  G ) `  (
( B P k ) G ( A P k ) ) )  =  ( ( ( inv `  G
) `  ( A P k ) ) G ( ( inv `  G ) `  ( B P k ) ) ) )
8677, 83, 853eqtrd 2319 . . . . . . 7  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A G B ) P
-u k )  =  ( ( ( inv `  G ) `  ( A P k ) ) G ( ( inv `  G ) `  ( B P k ) ) ) )
8728, 75, 32gxneg 20933 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  k  e.  ZZ )  ->  ( A P -u k )  =  ( ( inv `  G ) `  ( A P k ) ) )
8849, 57, 51, 87syl3anc 1182 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( A P
-u k )  =  ( ( inv `  G
) `  ( A P k ) ) )
8928, 75, 32gxneg 20933 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  k  e.  ZZ )  ->  ( B P -u k )  =  ( ( inv `  G ) `  ( B P k ) ) )
9049, 60, 51, 89syl3anc 1182 . . . . . . . 8  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( B P
-u k )  =  ( ( inv `  G
) `  ( B P k ) ) )
9188, 90oveq12d 5876 . . . . . . 7  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A P -u k ) G ( B P
-u k ) )  =  ( ( ( inv `  G ) `
 ( A P k ) ) G ( ( inv `  G
) `  ( B P k ) ) ) )
9286, 91eqtr4d 2318 . . . . . 6  |-  ( ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  /\  k  e.  ZZ  /\  ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) ) )  ->  ( ( A G B ) P
-u k )  =  ( ( A P
-u k ) G ( B P -u k ) ) )
93923exp 1150 . . . . 5  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (
k  e.  ZZ  ->  ( ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) )  -> 
( ( A G B ) P -u k )  =  ( ( A P -u k ) G ( B P -u k
) ) ) ) )
9474, 93syl5 28 . . . 4  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  (
k  e.  NN  ->  ( ( ( A G B ) P k )  =  ( ( A P k ) G ( B P k ) )  -> 
( ( A G B ) P -u k )  =  ( ( A P -u k ) G ( B P -u k
) ) ) ) )
955, 10, 15, 20, 25, 47, 73, 94zindd 10113 . . 3  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  B  e.  X )  ->  ( K  e.  ZZ  ->  ( ( A G B ) P K )  =  ( ( A P K ) G ( B P K ) ) ) )
96953expb 1152 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( K  e.  ZZ  ->  ( ( A G B ) P K )  =  ( ( A P K ) G ( B P K ) ) ) )
97963impia 1148 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  K  e.  ZZ )  ->  ( ( A G B ) P K )  =  ( ( A P K ) G ( B P K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ran crn 4690   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740   -ucneg 9038   NNcn 9746   NN0cn0 9965   ZZcz 10024   GrpOpcgr 20853  GIdcgi 20854   invcgn 20855   ^gcgx 20857   AbelOpcablo 20948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gx 20862  df-ablo 20949
  Copyright terms: Public domain W3C validator