MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gxnn0neg Structured version   Unicode version

Theorem gxnn0neg 21843
Description: A negative group power is the inverse of the positive power (lemma with nonnegative exponent - use gxneg 21846 instead). (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
gxnn0neg.1  |-  X  =  ran  G
gxnn0neg.2  |-  N  =  ( inv `  G
)
gxnn0neg.3  |-  P  =  ( ^g `  G
)
Assertion
Ref Expression
gxnn0neg  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e. 
NN0 )  ->  ( A P -u K )  =  ( N `  ( A P K ) ) )

Proof of Theorem gxnn0neg
StepHypRef Expression
1 elnn0 10215 . . 3  |-  ( K  e.  NN0  <->  ( K  e.  NN  \/  K  =  0 ) )
2 nnnegz 10277 . . . . . . . 8  |-  ( K  e.  NN  ->  -u K  e.  ZZ )
3 nngt0 10021 . . . . . . . . 9  |-  ( K  e.  NN  ->  0  <  K )
4 nnre 9999 . . . . . . . . . 10  |-  ( K  e.  NN  ->  K  e.  RR )
54lt0neg2d 9589 . . . . . . . . 9  |-  ( K  e.  NN  ->  (
0  <  K  <->  -u K  <  0 ) )
63, 5mpbid 202 . . . . . . . 8  |-  ( K  e.  NN  ->  -u K  <  0 )
72, 6jca 519 . . . . . . 7  |-  ( K  e.  NN  ->  ( -u K  e.  ZZ  /\  -u K  <  0 ) )
8 gxnn0neg.1 . . . . . . . 8  |-  X  =  ran  G
9 gxnn0neg.3 . . . . . . . 8  |-  P  =  ( ^g `  G
)
10 gxnn0neg.2 . . . . . . . 8  |-  N  =  ( inv `  G
)
118, 9, 10gxnval 21840 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( -u K  e.  ZZ  /\  -u K  <  0 ) )  ->  ( A P -u K )  =  ( N `  (  seq  1 ( G , 
( NN  X.  { A } ) ) `  -u -u K ) ) )
127, 11syl3an3 1219 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  ( A P -u K )  =  ( N `  (  seq  1 ( G ,  ( NN  X.  { A } ) ) `
 -u -u K ) ) )
138, 9gxpval 21839 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  ( A P K )  =  (  seq  1 ( G ,  ( NN 
X.  { A }
) ) `  K
) )
14 nncn 10000 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  K  e.  CC )
1514negnegd 9394 . . . . . . . . . 10  |-  ( K  e.  NN  ->  -u -u K  =  K )
1615fveq2d 5724 . . . . . . . . 9  |-  ( K  e.  NN  ->  (  seq  1 ( G , 
( NN  X.  { A } ) ) `  -u -u K )  =  (  seq  1 ( G ,  ( NN  X.  { A } ) ) `
 K ) )
17163ad2ant3 980 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  (  seq  1 ( G , 
( NN  X.  { A } ) ) `  -u -u K )  =  (  seq  1 ( G ,  ( NN  X.  { A } ) ) `
 K ) )
1813, 17eqtr4d 2470 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  ( A P K )  =  (  seq  1 ( G ,  ( NN 
X.  { A }
) ) `  -u -u K
) )
1918fveq2d 5724 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  ( N `  ( A P K ) )  =  ( N `  (  seq  1 ( G , 
( NN  X.  { A } ) ) `  -u -u K ) ) )
2012, 19eqtr4d 2470 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  ( A P -u K )  =  ( N `  ( A P K ) ) )
21203expia 1155 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( K  e.  NN  ->  ( A P -u K
)  =  ( N `
 ( A P K ) ) ) )
22 negeq 9290 . . . . . . . . 9  |-  ( K  =  0  ->  -u K  =  -u 0 )
23 neg0 9339 . . . . . . . . 9  |-  -u 0  =  0
2422, 23syl6eq 2483 . . . . . . . 8  |-  ( K  =  0  ->  -u K  =  0 )
2524oveq2d 6089 . . . . . . 7  |-  ( K  =  0  ->  ( A P -u K )  =  ( A P 0 ) )
26 eqid 2435 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
278, 26, 9gx0 21841 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A P 0 )  =  (GId `  G )
)
2825, 27sylan9eqr 2489 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( A P -u K )  =  (GId `  G )
)
29 oveq2 6081 . . . . . . . 8  |-  ( K  =  0  ->  ( A P K )  =  ( A P 0 ) )
3029fveq2d 5724 . . . . . . 7  |-  ( K  =  0  ->  ( N `  ( A P K ) )  =  ( N `  ( A P 0 ) ) )
3127fveq2d 5724 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  ( A P 0 ) )  =  ( N `  (GId `  G ) ) )
3226, 10grpoinvid 21812 . . . . . . . . 9  |-  ( G  e.  GrpOp  ->  ( N `  (GId `  G )
)  =  (GId `  G ) )
3332adantr 452 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  (GId `  G
) )  =  (GId
`  G ) )
3431, 33eqtrd 2467 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  ( A P 0 ) )  =  (GId `  G
) )
3530, 34sylan9eqr 2489 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( N `  ( A P K ) )  =  (GId
`  G ) )
3628, 35eqtr4d 2470 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( A P -u K )  =  ( N `  ( A P K ) ) )
3736ex 424 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( K  =  0  ->  ( A P -u K
)  =  ( N `
 ( A P K ) ) ) )
3821, 37jaod 370 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( K  e.  NN  \/  K  =  0
)  ->  ( A P -u K )  =  ( N `  ( A P K ) ) ) )
391, 38syl5bi 209 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( K  e.  NN0  ->  ( A P -u K )  =  ( N `  ( A P K ) ) ) )
40393impia 1150 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e. 
NN0 )  ->  ( A P -u K )  =  ( N `  ( A P K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {csn 3806   class class class wbr 4204    X. cxp 4868   ran crn 4871   ` cfv 5446  (class class class)co 6073   0cc0 8982   1c1 8983    < clt 9112   -ucneg 9284   NNcn 9992   NN0cn0 10213   ZZcz 10274    seq cseq 11315   GrpOpcgr 21766  GIdcgi 21767   invcgn 21768   ^gcgx 21770
This theorem is referenced by:  gxcl  21845  gxneg  21846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-seq 11316  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gx 21775
  Copyright terms: Public domain W3C validator