MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gxnn0suc Structured version   Unicode version

Theorem gxnn0suc 21842
Description: Induction on group power (lemma with nonnegative exponent - use gxsuc 21850 instead). (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
gxnn0suc.1  |-  X  =  ran  G
gxnn0suc.2  |-  P  =  ( ^g `  G
)
Assertion
Ref Expression
gxnn0suc  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e. 
NN0 )  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) )

Proof of Theorem gxnn0suc
StepHypRef Expression
1 elnn0 10213 . . 3  |-  ( K  e.  NN0  <->  ( K  e.  NN  \/  K  =  0 ) )
2 peano2nn 10002 . . . . . . 7  |-  ( K  e.  NN  ->  ( K  +  1 )  e.  NN )
3 gxnn0suc.1 . . . . . . . 8  |-  X  =  ran  G
4 gxnn0suc.2 . . . . . . . 8  |-  P  =  ( ^g `  G
)
53, 4gxpval 21837 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  +  1 )  e.  NN )  -> 
( A P ( K  +  1 ) )  =  (  seq  1 ( G , 
( NN  X.  { A } ) ) `  ( K  +  1
) ) )
62, 5syl3an3 1219 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  ( A P ( K  + 
1 ) )  =  (  seq  1 ( G ,  ( NN 
X.  { A }
) ) `  ( K  +  1 ) ) )
7 fvconst2g 5937 . . . . . . . . . 10  |-  ( ( A  e.  X  /\  ( K  +  1
)  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( K  +  1 ) )  =  A )
82, 7sylan2 461 . . . . . . . . 9  |-  ( ( A  e.  X  /\  K  e.  NN )  ->  ( ( NN  X.  { A } ) `  ( K  +  1
) )  =  A )
983adant1 975 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  (
( NN  X.  { A } ) `  ( K  +  1 ) )  =  A )
109oveq2d 6089 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  (
(  seq  1 ( G ,  ( NN 
X.  { A }
) ) `  K
) G ( ( NN  X.  { A } ) `  ( K  +  1 ) ) )  =  ( (  seq  1 ( G ,  ( NN 
X.  { A }
) ) `  K
) G A ) )
11 seqp1 11328 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  1
)  ->  (  seq  1 ( G , 
( NN  X.  { A } ) ) `  ( K  +  1
) )  =  ( (  seq  1 ( G ,  ( NN 
X.  { A }
) ) `  K
) G ( ( NN  X.  { A } ) `  ( K  +  1 ) ) ) )
12 nnuz 10511 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1311, 12eleq2s 2527 . . . . . . . 8  |-  ( K  e.  NN  ->  (  seq  1 ( G , 
( NN  X.  { A } ) ) `  ( K  +  1
) )  =  ( (  seq  1 ( G ,  ( NN 
X.  { A }
) ) `  K
) G ( ( NN  X.  { A } ) `  ( K  +  1 ) ) ) )
14133ad2ant3 980 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  (  seq  1 ( G , 
( NN  X.  { A } ) ) `  ( K  +  1
) )  =  ( (  seq  1 ( G ,  ( NN 
X.  { A }
) ) `  K
) G ( ( NN  X.  { A } ) `  ( K  +  1 ) ) ) )
153, 4gxpval 21837 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  ( A P K )  =  (  seq  1 ( G ,  ( NN 
X.  { A }
) ) `  K
) )
1615oveq1d 6088 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  (
( A P K ) G A )  =  ( (  seq  1 ( G , 
( NN  X.  { A } ) ) `  K ) G A ) )
1710, 14, 163eqtr4d 2477 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  (  seq  1 ( G , 
( NN  X.  { A } ) ) `  ( K  +  1
) )  =  ( ( A P K ) G A ) )
186, 17eqtrd 2467 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  NN )  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) )
19183expia 1155 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( K  e.  NN  ->  ( A P ( K  +  1 ) )  =  ( ( A P K ) G A ) ) )
20 eqid 2435 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
213, 20grpolid 21797 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
(GId `  G ) G A )  =  A )
2221adantr 452 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( (GId `  G ) G A )  =  A )
23 simpr 448 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  K  = 
0 )
2423oveq2d 6089 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( A P K )  =  ( A P 0 ) )
253, 20, 4gx0 21839 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A P 0 )  =  (GId `  G )
)
2625adantr 452 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( A P 0 )  =  (GId `  G )
)
2724, 26eqtrd 2467 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( A P K )  =  (GId
`  G ) )
2827oveq1d 6088 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( ( A P K ) G A )  =  ( (GId `  G ) G A ) )
2923oveq1d 6088 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( K  +  1 )  =  ( 0  +  1 ) )
30 0p1e1 10083 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
3129, 30syl6eq 2483 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( K  +  1 )  =  1 )
3231oveq2d 6089 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( A P ( K  + 
1 ) )  =  ( A P 1 ) )
333, 4gx1 21840 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A P 1 )  =  A )
3433adantr 452 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( A P 1 )  =  A )
3532, 34eqtrd 2467 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( A P ( K  + 
1 ) )  =  A )
3622, 28, 353eqtr4rd 2478 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  K  =  0 )  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) )
3736ex 424 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( K  =  0  ->  ( A P ( K  +  1 ) )  =  ( ( A P K ) G A ) ) )
3819, 37jaod 370 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( K  e.  NN  \/  K  =  0
)  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) ) )
391, 38syl5bi 209 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( K  e.  NN0  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) ) )
40393impia 1150 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e. 
NN0 )  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {csn 3806    X. cxp 4868   ran crn 4871   ` cfv 5446  (class class class)co 6073   0cc0 8980   1c1 8981    + caddc 8983   NNcn 9990   NN0cn0 10211   ZZ>=cuz 10478    seq cseq 11313   GrpOpcgr 21764  GIdcgi 21765   ^gcgx 21768
This theorem is referenced by:  gxcl  21843  gxcom  21847  gxinv  21848  gxsuc  21850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-nn 9991  df-n0 10212  df-z 10273  df-uz 10479  df-seq 11314  df-grpo 21769  df-gid 21770  df-gx 21773
  Copyright terms: Public domain W3C validator