MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gxsuc Structured version   Unicode version

Theorem gxsuc 21862
Description: Induction on group power. (Contributed by Paul Chapman, 17-Apr-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
gxsuc.1  |-  X  =  ran  G
gxsuc.2  |-  P  =  ( ^g `  G
)
Assertion
Ref Expression
gxsuc  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) )

Proof of Theorem gxsuc
StepHypRef Expression
1 gxsuc.1 . . . . 5  |-  X  =  ran  G
2 gxsuc.2 . . . . 5  |-  P  =  ( ^g `  G
)
31, 2gxnn0suc 21854 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e. 
NN0 )  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) )
433expia 1156 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( K  e.  NN0  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) ) )
543adant3 978 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  ( K  e.  NN0  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) ) )
6 simp3l 986 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  ->  K  e.  ZZ )
71, 2gxcom 21859 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  (
( A P K ) G A )  =  ( A G ( A P K ) ) )
86, 7syld3an3 1230 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( A P K ) G A )  =  ( A G ( A P K ) ) )
9 simp1 958 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  ->  G  e.  GrpOp )
10 peano2z 10320 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ZZ )
116, 10syl 16 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( K  +  1 )  e.  ZZ )
121, 2gxcl 21855 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  +  1 )  e.  ZZ )  -> 
( A P ( K  +  1 ) )  e.  X )
1311, 12syld3an3 1230 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( A P ( K  +  1 ) )  e.  X )
14 eqid 2438 . . . . . . . . . . 11  |-  ( inv `  G )  =  ( inv `  G )
151, 14grpo2inv 21829 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( A P ( K  + 
1 ) )  e.  X )  ->  (
( inv `  G
) `  ( ( inv `  G ) `  ( A P ( K  +  1 ) ) ) )  =  ( A P ( K  +  1 ) ) )
169, 13, 15syl2anc 644 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( inv `  G
) `  ( ( inv `  G ) `  ( A P ( K  +  1 ) ) ) )  =  ( A P ( K  +  1 ) ) )
1716oveq2d 6099 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( ( inv `  G ) `  A
) G ( ( inv `  G ) `
 ( ( inv `  G ) `  ( A P ( K  + 
1 ) ) ) ) )  =  ( ( ( inv `  G
) `  A ) G ( A P ( K  +  1 ) ) ) )
18 nnm1nn0 10263 . . . . . . . . . . . . . . 15  |-  ( -u K  e.  NN  ->  (
-u K  -  1 )  e.  NN0 )
1918adantl 454 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  -u K  e.  NN )  ->  ( -u K  -  1 )  e. 
NN0 )
20 zcn 10289 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ZZ  ->  K  e.  CC )
21 ax-1cn 9050 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
22 negdi 9360 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  CC  /\  1  e.  CC )  -> 
-u ( K  + 
1 )  =  (
-u K  +  -u
1 ) )
2320, 21, 22sylancl 645 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ZZ  ->  -u ( K  +  1 )  =  ( -u K  +  -u 1 ) )
2420negcld 9400 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ZZ  ->  -u K  e.  CC )
25 negsub 9351 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u K  e.  CC  /\  1  e.  CC )  ->  ( -u K  +  -u 1 )  =  ( -u K  - 
1 ) )
2624, 21, 25sylancl 645 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ZZ  ->  ( -u K  +  -u 1
)  =  ( -u K  -  1 ) )
2723, 26eqtrd 2470 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ZZ  ->  -u ( K  +  1 )  =  ( -u K  -  1 ) )
2827eleq1d 2504 . . . . . . . . . . . . . . 15  |-  ( K  e.  ZZ  ->  ( -u ( K  +  1 )  e.  NN0  <->  ( -u K  -  1 )  e. 
NN0 ) )
2928adantr 453 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  -u K  e.  NN )  ->  ( -u ( K  +  1 )  e.  NN0  <->  ( -u K  -  1 )  e. 
NN0 ) )
3019, 29mpbird 225 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  -u K  e.  NN )  ->  -u ( K  + 
1 )  e.  NN0 )
311, 2gxnn0suc 21854 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  -u ( K  +  1 )  e.  NN0 )  -> 
( A P (
-u ( K  + 
1 )  +  1 ) )  =  ( ( A P -u ( K  +  1
) ) G A ) )
3230, 31syl3an3 1220 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( A P (
-u ( K  + 
1 )  +  1 ) )  =  ( ( A P -u ( K  +  1
) ) G A ) )
3327oveq1d 6098 . . . . . . . . . . . . . . 15  |-  ( K  e.  ZZ  ->  ( -u ( K  +  1 )  +  1 )  =  ( ( -u K  -  1 )  +  1 ) )
34 npcan 9316 . . . . . . . . . . . . . . . 16  |-  ( (
-u K  e.  CC  /\  1  e.  CC )  ->  ( ( -u K  -  1 )  +  1 )  = 
-u K )
3524, 21, 34sylancl 645 . . . . . . . . . . . . . . 15  |-  ( K  e.  ZZ  ->  (
( -u K  -  1 )  +  1 )  =  -u K )
3633, 35eqtrd 2470 . . . . . . . . . . . . . 14  |-  ( K  e.  ZZ  ->  ( -u ( K  +  1 )  +  1 )  =  -u K )
3736oveq2d 6099 . . . . . . . . . . . . 13  |-  ( K  e.  ZZ  ->  ( A P ( -u ( K  +  1 )  +  1 ) )  =  ( A P
-u K ) )
386, 37syl 16 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( A P (
-u ( K  + 
1 )  +  1 ) )  =  ( A P -u K
) )
3932, 38eqtr3d 2472 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( A P
-u ( K  + 
1 ) ) G A )  =  ( A P -u K
) )
401, 14, 2gxneg 21856 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  +  1 )  e.  ZZ )  -> 
( A P -u ( K  +  1
) )  =  ( ( inv `  G
) `  ( A P ( K  + 
1 ) ) ) )
4110, 40syl3an3 1220 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  ( A P -u ( K  +  1 ) )  =  ( ( inv `  G ) `  ( A P ( K  + 
1 ) ) ) )
426, 41syld3an3 1230 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( A P -u ( K  +  1
) )  =  ( ( inv `  G
) `  ( A P ( K  + 
1 ) ) ) )
4342oveq1d 6098 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( A P
-u ( K  + 
1 ) ) G A )  =  ( ( ( inv `  G
) `  ( A P ( K  + 
1 ) ) ) G A ) )
441, 14, 2gxneg 21856 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  ( A P -u K )  =  ( ( inv `  G ) `  ( A P K ) ) )
456, 44syld3an3 1230 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( A P -u K )  =  ( ( inv `  G
) `  ( A P K ) ) )
4639, 43, 453eqtr3d 2478 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( ( inv `  G ) `  ( A P ( K  + 
1 ) ) ) G A )  =  ( ( inv `  G
) `  ( A P K ) ) )
4746fveq2d 5734 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( inv `  G
) `  ( (
( inv `  G
) `  ( A P ( K  + 
1 ) ) ) G A ) )  =  ( ( inv `  G ) `  (
( inv `  G
) `  ( A P K ) ) ) )
481, 14grpoinvcl 21816 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A P ( K  + 
1 ) )  e.  X )  ->  (
( inv `  G
) `  ( A P ( K  + 
1 ) ) )  e.  X )
499, 13, 48syl2anc 644 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( inv `  G
) `  ( A P ( K  + 
1 ) ) )  e.  X )
50 simp2 959 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  ->  A  e.  X )
511, 14grpoinvop 21831 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  (
( inv `  G
) `  ( A P ( K  + 
1 ) ) )  e.  X  /\  A  e.  X )  ->  (
( inv `  G
) `  ( (
( inv `  G
) `  ( A P ( K  + 
1 ) ) ) G A ) )  =  ( ( ( inv `  G ) `
 A ) G ( ( inv `  G
) `  ( ( inv `  G ) `  ( A P ( K  +  1 ) ) ) ) ) )
529, 49, 50, 51syl3anc 1185 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( inv `  G
) `  ( (
( inv `  G
) `  ( A P ( K  + 
1 ) ) ) G A ) )  =  ( ( ( inv `  G ) `
 A ) G ( ( inv `  G
) `  ( ( inv `  G ) `  ( A P ( K  +  1 ) ) ) ) ) )
531, 2gxcl 21855 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  ( A P K )  e.  X )
546, 53syld3an3 1230 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( A P K )  e.  X )
551, 14grpo2inv 21829 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( A P K )  e.  X )  ->  (
( inv `  G
) `  ( ( inv `  G ) `  ( A P K ) ) )  =  ( A P K ) )
569, 54, 55syl2anc 644 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( inv `  G
) `  ( ( inv `  G ) `  ( A P K ) ) )  =  ( A P K ) )
5747, 52, 563eqtr3d 2478 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( ( inv `  G ) `  A
) G ( ( inv `  G ) `
 ( ( inv `  G ) `  ( A P ( K  + 
1 ) ) ) ) )  =  ( A P K ) )
5817, 57eqtr3d 2472 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( ( ( inv `  G ) `  A
) G ( A P ( K  + 
1 ) ) )  =  ( A P K ) )
5958oveq2d 6099 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( A G ( ( ( inv `  G
) `  A ) G ( A P ( K  +  1 ) ) ) )  =  ( A G ( A P K ) ) )
601, 14grpoasscan1 21827 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( A P ( K  + 
1 ) )  e.  X )  ->  ( A G ( ( ( inv `  G ) `
 A ) G ( A P ( K  +  1 ) ) ) )  =  ( A P ( K  +  1 ) ) )
6113, 60syld3an3 1230 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( A G ( ( ( inv `  G
) `  A ) G ( A P ( K  +  1 ) ) ) )  =  ( A P ( K  +  1 ) ) )
628, 59, 613eqtr2rd 2477 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( K  e.  ZZ  /\  -u K  e.  NN ) )  -> 
( A P ( K  +  1 ) )  =  ( ( A P K ) G A ) )
63623expia 1156 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( K  e.  ZZ  /\  -u K  e.  NN )  ->  ( A P ( K  +  1 ) )  =  ( ( A P K ) G A ) ) )
6463exp3a 427 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( K  e.  ZZ  ->  (
-u K  e.  NN  ->  ( A P ( K  +  1 ) )  =  ( ( A P K ) G A ) ) ) )
65643impia 1151 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  ( -u K  e.  NN  ->  ( A P ( K  +  1 ) )  =  ( ( A P K ) G A ) ) )
66 elznn0nn 10297 . . . 4  |-  ( K  e.  ZZ  <->  ( K  e.  NN0  \/  ( K  e.  RR  /\  -u K  e.  NN ) ) )
67 simpr 449 . . . . 5  |-  ( ( K  e.  RR  /\  -u K  e.  NN )  ->  -u K  e.  NN )
6867orim2i 506 . . . 4  |-  ( ( K  e.  NN0  \/  ( K  e.  RR  /\  -u K  e.  NN ) )  ->  ( K  e.  NN0  \/  -u K  e.  NN ) )
6966, 68sylbi 189 . . 3  |-  ( K  e.  ZZ  ->  ( K  e.  NN0  \/  -u K  e.  NN ) )
70693ad2ant3 981 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  ( K  e.  NN0  \/  -u K  e.  NN ) )
715, 65, 70mpjaod 372 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  K  e.  ZZ )  ->  ( A P ( K  + 
1 ) )  =  ( ( A P K ) G A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   ran crn 4881   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   1c1 8993    + caddc 8995    - cmin 9293   -ucneg 9294   NNcn 10002   NN0cn0 10223   ZZcz 10284   GrpOpcgr 21776   invcgn 21778   ^gcgx 21780
This theorem is referenced by:  gxid  21863  gxnn0add  21864  gxnn0mul  21867  gxdi  21886
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-n0 10224  df-z 10285  df-uz 10491  df-seq 11326  df-grpo 21781  df-gid 21782  df-ginv 21783  df-gx 21785
  Copyright terms: Public domain W3C validator