MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzaddcl Unicode version

Theorem gzaddcl 13031
Description: The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzaddcl  |-  ( ( A  e.  ZZ [
_i ]  /\  B  e.  ZZ [ _i ]
)  ->  ( A  +  B )  e.  ZZ [ _i ] )

Proof of Theorem gzaddcl
StepHypRef Expression
1 gzcn 13026 . . 3  |-  ( A  e.  ZZ [ _i ]  ->  A  e.  CC )
2 gzcn 13026 . . 3  |-  ( B  e.  ZZ [ _i ]  ->  B  e.  CC )
3 addcl 8864 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
41, 2, 3syl2an 463 . 2  |-  ( ( A  e.  ZZ [
_i ]  /\  B  e.  ZZ [ _i ]
)  ->  ( A  +  B )  e.  CC )
5 readd 11658 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  +  B )
)  =  ( ( Re `  A )  +  ( Re `  B ) ) )
61, 2, 5syl2an 463 . . 3  |-  ( ( A  e.  ZZ [
_i ]  /\  B  e.  ZZ [ _i ]
)  ->  ( Re `  ( A  +  B
) )  =  ( ( Re `  A
)  +  ( Re
`  B ) ) )
7 elgz 13025 . . . . 5  |-  ( A  e.  ZZ [ _i ] 
<->  ( A  e.  CC  /\  ( Re `  A
)  e.  ZZ  /\  ( Im `  A )  e.  ZZ ) )
87simp2bi 971 . . . 4  |-  ( A  e.  ZZ [ _i ]  ->  ( Re `  A )  e.  ZZ )
9 elgz 13025 . . . . 5  |-  ( B  e.  ZZ [ _i ] 
<->  ( B  e.  CC  /\  ( Re `  B
)  e.  ZZ  /\  ( Im `  B )  e.  ZZ ) )
109simp2bi 971 . . . 4  |-  ( B  e.  ZZ [ _i ]  ->  ( Re `  B )  e.  ZZ )
11 zaddcl 10106 . . . 4  |-  ( ( ( Re `  A
)  e.  ZZ  /\  ( Re `  B )  e.  ZZ )  -> 
( ( Re `  A )  +  ( Re `  B ) )  e.  ZZ )
128, 10, 11syl2an 463 . . 3  |-  ( ( A  e.  ZZ [
_i ]  /\  B  e.  ZZ [ _i ]
)  ->  ( (
Re `  A )  +  ( Re `  B ) )  e.  ZZ )
136, 12eqeltrd 2390 . 2  |-  ( ( A  e.  ZZ [
_i ]  /\  B  e.  ZZ [ _i ]
)  ->  ( Re `  ( A  +  B
) )  e.  ZZ )
14 imadd 11666 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B )
)  =  ( ( Im `  A )  +  ( Im `  B ) ) )
151, 2, 14syl2an 463 . . 3  |-  ( ( A  e.  ZZ [
_i ]  /\  B  e.  ZZ [ _i ]
)  ->  ( Im `  ( A  +  B
) )  =  ( ( Im `  A
)  +  ( Im
`  B ) ) )
167simp3bi 972 . . . 4  |-  ( A  e.  ZZ [ _i ]  ->  ( Im `  A )  e.  ZZ )
179simp3bi 972 . . . 4  |-  ( B  e.  ZZ [ _i ]  ->  ( Im `  B )  e.  ZZ )
18 zaddcl 10106 . . . 4  |-  ( ( ( Im `  A
)  e.  ZZ  /\  ( Im `  B )  e.  ZZ )  -> 
( ( Im `  A )  +  ( Im `  B ) )  e.  ZZ )
1916, 17, 18syl2an 463 . . 3  |-  ( ( A  e.  ZZ [
_i ]  /\  B  e.  ZZ [ _i ]
)  ->  ( (
Im `  A )  +  ( Im `  B ) )  e.  ZZ )
2015, 19eqeltrd 2390 . 2  |-  ( ( A  e.  ZZ [
_i ]  /\  B  e.  ZZ [ _i ]
)  ->  ( Im `  ( A  +  B
) )  e.  ZZ )
21 elgz 13025 . 2  |-  ( ( A  +  B )  e.  ZZ [ _i ] 
<->  ( ( A  +  B )  e.  CC  /\  ( Re `  ( A  +  B )
)  e.  ZZ  /\  ( Im `  ( A  +  B ) )  e.  ZZ ) )
224, 13, 20, 21syl3anbrc 1136 1  |-  ( ( A  e.  ZZ [
_i ]  /\  B  e.  ZZ [ _i ]
)  ->  ( A  +  B )  e.  ZZ [ _i ] )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701   ` cfv 5292  (class class class)co 5900   CCcc 8780    + caddc 8785   ZZcz 10071   Recre 11629   Imcim 11630   ZZ [ _i ]cgz 13023
This theorem is referenced by:  gzreim  13033  gzsubcl  13034  mul4sqlem  13047  gzsubrg  16482
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-n0 10013  df-z 10072  df-cj 11631  df-re 11632  df-im 11633  df-gz 13024
  Copyright terms: Public domain W3C validator