HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2bi Unicode version

Theorem h1de2bi 22133
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1  |-  A  e. 
~H
h1de2.2  |-  B  e. 
~H
Assertion
Ref Expression
h1de2bi  |-  ( B  =/=  0h  ->  ( A  e.  ( _|_ `  ( _|_ `  { B } ) )  <->  A  =  ( ( ( A 
.ih  B )  / 
( B  .ih  B
) )  .h  B
) ) )

Proof of Theorem h1de2bi
StepHypRef Expression
1 h1de2.2 . . . 4  |-  B  e. 
~H
2 his6 21678 . . . 4  |-  ( B  e.  ~H  ->  (
( B  .ih  B
)  =  0  <->  B  =  0h ) )
31, 2ax-mp 8 . . 3  |-  ( ( B  .ih  B )  =  0  <->  B  =  0h )
43necon3bii 2478 . 2  |-  ( ( B  .ih  B )  =/=  0  <->  B  =/=  0h )
5 h1de2.1 . . . . . . . . 9  |-  A  e. 
~H
65, 1h1de2i 22132 . . . . . . . 8  |-  ( A  e.  ( _|_ `  ( _|_ `  { B }
) )  ->  (
( B  .ih  B
)  .h  A )  =  ( ( A 
.ih  B )  .h  B ) )
76adantl 452 . . . . . . 7  |-  ( ( ( B  .ih  B
)  =/=  0  /\  A  e.  ( _|_ `  ( _|_ `  { B } ) ) )  ->  ( ( B 
.ih  B )  .h  A )  =  ( ( A  .ih  B
)  .h  B ) )
87oveq2d 5874 . . . . . 6  |-  ( ( ( B  .ih  B
)  =/=  0  /\  A  e.  ( _|_ `  ( _|_ `  { B } ) ) )  ->  ( ( 1  /  ( B  .ih  B ) )  .h  (
( B  .ih  B
)  .h  A ) )  =  ( ( 1  /  ( B 
.ih  B ) )  .h  ( ( A 
.ih  B )  .h  B ) ) )
91, 1hicli 21660 . . . . . . . . . . 11  |-  ( B 
.ih  B )  e.  CC
109recclzi 9485 . . . . . . . . . 10  |-  ( ( B  .ih  B )  =/=  0  ->  (
1  /  ( B 
.ih  B ) )  e.  CC )
11 ax-hvmulass 21587 . . . . . . . . . . 11  |-  ( ( ( 1  /  ( B  .ih  B ) )  e.  CC  /\  ( B  .ih  B )  e.  CC  /\  A  e. 
~H )  ->  (
( ( 1  / 
( B  .ih  B
) )  x.  ( B  .ih  B ) )  .h  A )  =  ( ( 1  / 
( B  .ih  B
) )  .h  (
( B  .ih  B
)  .h  A ) ) )
129, 5, 11mp3an23 1269 . . . . . . . . . 10  |-  ( ( 1  /  ( B 
.ih  B ) )  e.  CC  ->  (
( ( 1  / 
( B  .ih  B
) )  x.  ( B  .ih  B ) )  .h  A )  =  ( ( 1  / 
( B  .ih  B
) )  .h  (
( B  .ih  B
)  .h  A ) ) )
1310, 12syl 15 . . . . . . . . 9  |-  ( ( B  .ih  B )  =/=  0  ->  (
( ( 1  / 
( B  .ih  B
) )  x.  ( B  .ih  B ) )  .h  A )  =  ( ( 1  / 
( B  .ih  B
) )  .h  (
( B  .ih  B
)  .h  A ) ) )
14 ax-1cn 8795 . . . . . . . . . . 11  |-  1  e.  CC
1514, 9divcan1zi 9496 . . . . . . . . . 10  |-  ( ( B  .ih  B )  =/=  0  ->  (
( 1  /  ( B  .ih  B ) )  x.  ( B  .ih  B ) )  =  1 )
1615oveq1d 5873 . . . . . . . . 9  |-  ( ( B  .ih  B )  =/=  0  ->  (
( ( 1  / 
( B  .ih  B
) )  x.  ( B  .ih  B ) )  .h  A )  =  ( 1  .h  A
) )
1713, 16eqtr3d 2317 . . . . . . . 8  |-  ( ( B  .ih  B )  =/=  0  ->  (
( 1  /  ( B  .ih  B ) )  .h  ( ( B 
.ih  B )  .h  A ) )  =  ( 1  .h  A
) )
18 ax-hvmulid 21586 . . . . . . . . 9  |-  ( A  e.  ~H  ->  (
1  .h  A )  =  A )
195, 18ax-mp 8 . . . . . . . 8  |-  ( 1  .h  A )  =  A
2017, 19syl6eq 2331 . . . . . . 7  |-  ( ( B  .ih  B )  =/=  0  ->  (
( 1  /  ( B  .ih  B ) )  .h  ( ( B 
.ih  B )  .h  A ) )  =  A )
2120adantr 451 . . . . . 6  |-  ( ( ( B  .ih  B
)  =/=  0  /\  A  e.  ( _|_ `  ( _|_ `  { B } ) ) )  ->  ( ( 1  /  ( B  .ih  B ) )  .h  (
( B  .ih  B
)  .h  A ) )  =  A )
228, 21eqtr3d 2317 . . . . 5  |-  ( ( ( B  .ih  B
)  =/=  0  /\  A  e.  ( _|_ `  ( _|_ `  { B } ) ) )  ->  ( ( 1  /  ( B  .ih  B ) )  .h  (
( A  .ih  B
)  .h  B ) )  =  A )
235, 1hicli 21660 . . . . . . . . 9  |-  ( A 
.ih  B )  e.  CC
24 ax-hvmulass 21587 . . . . . . . . 9  |-  ( ( ( 1  /  ( B  .ih  B ) )  e.  CC  /\  ( A  .ih  B )  e.  CC  /\  B  e. 
~H )  ->  (
( ( 1  / 
( B  .ih  B
) )  x.  ( A  .ih  B ) )  .h  B )  =  ( ( 1  / 
( B  .ih  B
) )  .h  (
( A  .ih  B
)  .h  B ) ) )
2523, 1, 24mp3an23 1269 . . . . . . . 8  |-  ( ( 1  /  ( B 
.ih  B ) )  e.  CC  ->  (
( ( 1  / 
( B  .ih  B
) )  x.  ( A  .ih  B ) )  .h  B )  =  ( ( 1  / 
( B  .ih  B
) )  .h  (
( A  .ih  B
)  .h  B ) ) )
2610, 25syl 15 . . . . . . 7  |-  ( ( B  .ih  B )  =/=  0  ->  (
( ( 1  / 
( B  .ih  B
) )  x.  ( A  .ih  B ) )  .h  B )  =  ( ( 1  / 
( B  .ih  B
) )  .h  (
( A  .ih  B
)  .h  B ) ) )
27 mulcom 8823 . . . . . . . . . 10  |-  ( ( ( 1  /  ( B  .ih  B ) )  e.  CC  /\  ( A  .ih  B )  e.  CC )  ->  (
( 1  /  ( B  .ih  B ) )  x.  ( A  .ih  B ) )  =  ( ( A  .ih  B
)  x.  ( 1  /  ( B  .ih  B ) ) ) )
2810, 23, 27sylancl 643 . . . . . . . . 9  |-  ( ( B  .ih  B )  =/=  0  ->  (
( 1  /  ( B  .ih  B ) )  x.  ( A  .ih  B ) )  =  ( ( A  .ih  B
)  x.  ( 1  /  ( B  .ih  B ) ) ) )
2923, 9divreczi 9498 . . . . . . . . 9  |-  ( ( B  .ih  B )  =/=  0  ->  (
( A  .ih  B
)  /  ( B 
.ih  B ) )  =  ( ( A 
.ih  B )  x.  ( 1  /  ( B  .ih  B ) ) ) )
3028, 29eqtr4d 2318 . . . . . . . 8  |-  ( ( B  .ih  B )  =/=  0  ->  (
( 1  /  ( B  .ih  B ) )  x.  ( A  .ih  B ) )  =  ( ( A  .ih  B
)  /  ( B 
.ih  B ) ) )
3130oveq1d 5873 . . . . . . 7  |-  ( ( B  .ih  B )  =/=  0  ->  (
( ( 1  / 
( B  .ih  B
) )  x.  ( A  .ih  B ) )  .h  B )  =  ( ( ( A 
.ih  B )  / 
( B  .ih  B
) )  .h  B
) )
3226, 31eqtr3d 2317 . . . . . 6  |-  ( ( B  .ih  B )  =/=  0  ->  (
( 1  /  ( B  .ih  B ) )  .h  ( ( A 
.ih  B )  .h  B ) )  =  ( ( ( A 
.ih  B )  / 
( B  .ih  B
) )  .h  B
) )
3332adantr 451 . . . . 5  |-  ( ( ( B  .ih  B
)  =/=  0  /\  A  e.  ( _|_ `  ( _|_ `  { B } ) ) )  ->  ( ( 1  /  ( B  .ih  B ) )  .h  (
( A  .ih  B
)  .h  B ) )  =  ( ( ( A  .ih  B
)  /  ( B 
.ih  B ) )  .h  B ) )
3422, 33eqtr3d 2317 . . . 4  |-  ( ( ( B  .ih  B
)  =/=  0  /\  A  e.  ( _|_ `  ( _|_ `  { B } ) ) )  ->  A  =  ( ( ( A  .ih  B )  /  ( B 
.ih  B ) )  .h  B ) )
3534ex 423 . . 3  |-  ( ( B  .ih  B )  =/=  0  ->  ( A  e.  ( _|_ `  ( _|_ `  { B } ) )  ->  A  =  ( (
( A  .ih  B
)  /  ( B 
.ih  B ) )  .h  B ) ) )
3623, 9divclzi 9495 . . . . 5  |-  ( ( B  .ih  B )  =/=  0  ->  (
( A  .ih  B
)  /  ( B 
.ih  B ) )  e.  CC )
371elexi 2797 . . . . . . . . . . 11  |-  B  e. 
_V
3837snss 3748 . . . . . . . . . 10  |-  ( B  e.  ~H  <->  { B }  C_  ~H )
391, 38mpbi 199 . . . . . . . . 9  |-  { B }  C_  ~H
40 occl 21883 . . . . . . . . 9  |-  ( { B }  C_  ~H  ->  ( _|_ `  { B } )  e.  CH )
4139, 40ax-mp 8 . . . . . . . 8  |-  ( _|_ `  { B } )  e.  CH
4241choccli 21886 . . . . . . 7  |-  ( _|_ `  ( _|_ `  { B } ) )  e. 
CH
4342chshii 21807 . . . . . 6  |-  ( _|_ `  ( _|_ `  { B } ) )  e.  SH
44 h1did 22130 . . . . . . 7  |-  ( B  e.  ~H  ->  B  e.  ( _|_ `  ( _|_ `  { B }
) ) )
451, 44ax-mp 8 . . . . . 6  |-  B  e.  ( _|_ `  ( _|_ `  { B }
) )
46 shmulcl 21797 . . . . . 6  |-  ( ( ( _|_ `  ( _|_ `  { B }
) )  e.  SH  /\  ( ( A  .ih  B )  /  ( B 
.ih  B ) )  e.  CC  /\  B  e.  ( _|_ `  ( _|_ `  { B }
) ) )  -> 
( ( ( A 
.ih  B )  / 
( B  .ih  B
) )  .h  B
)  e.  ( _|_ `  ( _|_ `  { B } ) ) )
4743, 45, 46mp3an13 1268 . . . . 5  |-  ( ( ( A  .ih  B
)  /  ( B 
.ih  B ) )  e.  CC  ->  (
( ( A  .ih  B )  /  ( B 
.ih  B ) )  .h  B )  e.  ( _|_ `  ( _|_ `  { B }
) ) )
4836, 47syl 15 . . . 4  |-  ( ( B  .ih  B )  =/=  0  ->  (
( ( A  .ih  B )  /  ( B 
.ih  B ) )  .h  B )  e.  ( _|_ `  ( _|_ `  { B }
) ) )
49 eleq1 2343 . . . 4  |-  ( A  =  ( ( ( A  .ih  B )  /  ( B  .ih  B ) )  .h  B
)  ->  ( A  e.  ( _|_ `  ( _|_ `  { B }
) )  <->  ( (
( A  .ih  B
)  /  ( B 
.ih  B ) )  .h  B )  e.  ( _|_ `  ( _|_ `  { B }
) ) ) )
5048, 49syl5ibrcom 213 . . 3  |-  ( ( B  .ih  B )  =/=  0  ->  ( A  =  ( (
( A  .ih  B
)  /  ( B 
.ih  B ) )  .h  B )  ->  A  e.  ( _|_ `  ( _|_ `  { B } ) ) ) )
5135, 50impbid 183 . 2  |-  ( ( B  .ih  B )  =/=  0  ->  ( A  e.  ( _|_ `  ( _|_ `  { B } ) )  <->  A  =  ( ( ( A 
.ih  B )  / 
( B  .ih  B
) )  .h  B
) ) )
524, 51sylbir 204 1  |-  ( B  =/=  0h  ->  ( A  e.  ( _|_ `  ( _|_ `  { B } ) )  <->  A  =  ( ( ( A 
.ih  B )  / 
( B  .ih  B
) )  .h  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   {csn 3640   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    x. cmul 8742    / cdiv 9423   ~Hchil 21499    .h csm 21501    .ih csp 21502   0hc0v 21504   SHcsh 21508   CHcch 21509   _|_cort 21510
This theorem is referenced by:  h1de2ctlem  22134  elspansn2  22146
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664  ax-hcompl 21781
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-lm 16959  df-haus 17043  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cau 18682  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-dip 21274  df-hnorm 21548  df-hvsub 21551  df-hlim 21552  df-hcau 21553  df-sh 21786  df-ch 21801  df-oc 21831
  Copyright terms: Public domain W3C validator