HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hlm Unicode version

Theorem h2hlm 21576
Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hl.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
h2hl.2  |-  U  e.  NrmCVec
h2hl.3  |-  ~H  =  ( BaseSet `  U )
h2hl.4  |-  D  =  ( IndMet `  U )
h2hl.5  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
h2hlm  |-  ~~>v  =  ( ( ~~> t `  J
)  |`  ( ~H  ^m  NN ) )

Proof of Theorem h2hlm
Dummy variables  x  f  y  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 21568 . . 3  |-  ~~>v  =  { <. f ,  x >.  |  ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) }
21relopabi 4827 . 2  |-  Rel  ~~>v
3 relres 4999 . 2  |-  Rel  (
( ~~> t `  J
)  |`  ( ~H  ^m  NN ) )
41eleq2i 2360 . . 3  |-  ( <.
f ,  x >.  e. 
~~>v  <->  <. f ,  x >.  e. 
{ <. f ,  x >.  |  ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) } )
5 opabid 4287 . . 3  |-  ( <.
f ,  x >.  e. 
{ <. f ,  x >.  |  ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) }  <->  ( (
f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )
6 ancom 437 . . . . 5  |-  ( (
<. f ,  x >.  e.  ( ~~> t `  J
)  /\  f  e.  ( ~H  ^m  NN ) )  <->  ( f  e.  ( ~H  ^m  NN )  /\  <. f ,  x >.  e.  ( ~~> t `  J ) ) )
7 h2hl.3 . . . . . . . 8  |-  ~H  =  ( BaseSet `  U )
87hlex 21493 . . . . . . 7  |-  ~H  e.  _V
9 nnex 9768 . . . . . . 7  |-  NN  e.  _V
108, 9elmap 6812 . . . . . 6  |-  ( f  e.  ( ~H  ^m  NN )  <->  f : NN --> ~H )
1110anbi1i 676 . . . . 5  |-  ( ( f  e.  ( ~H 
^m  NN )  /\  <.
f ,  x >.  e.  ( ~~> t `  J
) )  <->  ( f : NN --> ~H  /\  <. f ,  x >.  e.  ( ~~> t `  J )
) )
12 df-br 4040 . . . . . . 7  |-  ( f ( ~~> t `  J
) x  <->  <. f ,  x >.  e.  ( ~~> t `  J )
)
13 h2hl.5 . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
14 h2hl.2 . . . . . . . . . 10  |-  U  e.  NrmCVec
15 h2hl.4 . . . . . . . . . . 11  |-  D  =  ( IndMet `  U )
167, 15imsxmet 21277 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  D  e.  ( * Met `  ~H ) )
1714, 16mp1i 11 . . . . . . . . 9  |-  ( f : NN --> ~H  ->  D  e.  ( * Met `  ~H ) )
18 nnuz 10279 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
19 1z 10069 . . . . . . . . . 10  |-  1  e.  ZZ
2019a1i 10 . . . . . . . . 9  |-  ( f : NN --> ~H  ->  1  e.  ZZ )
21 eqidd 2297 . . . . . . . . 9  |-  ( ( f : NN --> ~H  /\  k  e.  NN )  ->  ( f `  k
)  =  ( f `
 k ) )
22 id 19 . . . . . . . . 9  |-  ( f : NN --> ~H  ->  f : NN --> ~H )
2313, 17, 18, 20, 21, 22lmmbrf 18704 . . . . . . . 8  |-  ( f : NN --> ~H  ->  ( f ( ~~> t `  J ) x  <->  ( x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( f `  k ) D x )  <  y ) ) )
2418uztrn2 10261 . . . . . . . . . . . . . 14  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
25 ffvelrn 5679 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN --> ~H  /\  k  e.  NN )  ->  ( f `  k
)  e.  ~H )
26 h2hl.1 . . . . . . . . . . . . . . . . . 18  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
2726, 14, 7, 15h2hmetdval 21574 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f `  k
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( f `  k ) D x )  =  ( normh `  ( ( f `  k )  -h  x
) ) )
2825, 27sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( f : NN --> ~H  /\  k  e.  NN )  /\  x  e.  ~H )  ->  ( ( f `
 k ) D x )  =  (
normh `  ( ( f `
 k )  -h  x ) ) )
2928breq1d 4049 . . . . . . . . . . . . . . 15  |-  ( ( ( f : NN --> ~H  /\  k  e.  NN )  /\  x  e.  ~H )  ->  ( ( ( f `  k ) D x )  < 
y  <->  ( normh `  (
( f `  k
)  -h  x ) )  <  y ) )
3029an32s 779 . . . . . . . . . . . . . 14  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  k  e.  NN )  ->  ( ( ( f `  k ) D x )  < 
y  <->  ( normh `  (
( f `  k
)  -h  x ) )  <  y ) )
3124, 30sylan2 460 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( ( f `  k ) D x )  <  y  <->  ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )
3231anassrs 629 . . . . . . . . . . . 12  |-  ( ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( f `  k
) D x )  <  y  <->  ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )
3332ralbidva 2572 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( f `  k ) D x )  <  y  <->  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) )
3433rexbidva 2573 . . . . . . . . . 10  |-  ( ( f : NN --> ~H  /\  x  e.  ~H )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( f `  k ) D x )  <  y  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) )
3534ralbidv 2576 . . . . . . . . 9  |-  ( ( f : NN --> ~H  /\  x  e.  ~H )  ->  ( A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( f `  k ) D x )  < 
y  <->  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )
3635pm5.32da 622 . . . . . . . 8  |-  ( f : NN --> ~H  ->  ( ( x  e.  ~H  /\ 
A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( f `  k ) D x )  < 
y )  <->  ( x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
3723, 36bitrd 244 . . . . . . 7  |-  ( f : NN --> ~H  ->  ( f ( ~~> t `  J ) x  <->  ( x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
3812, 37syl5bbr 250 . . . . . 6  |-  ( f : NN --> ~H  ->  (
<. f ,  x >.  e.  ( ~~> t `  J
)  <->  ( x  e. 
~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
3938pm5.32i 618 . . . . 5  |-  ( ( f : NN --> ~H  /\  <.
f ,  x >.  e.  ( ~~> t `  J
) )  <->  ( f : NN --> ~H  /\  (
x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
406, 11, 393bitrri 263 . . . 4  |-  ( ( f : NN --> ~H  /\  ( x  e.  ~H  /\ 
A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
) )  <->  ( <. f ,  x >.  e.  ( ~~> t `  J )  /\  f  e.  ( ~H  ^m  NN ) ) )
41 anass 630 . . . 4  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
)  <->  ( f : NN --> ~H  /\  (
x  e.  ~H  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( (
f `  k )  -h  x ) )  < 
y ) ) )
42 vex 2804 . . . . 5  |-  x  e. 
_V
4342opelres 4976 . . . 4  |-  ( <.
f ,  x >.  e.  ( ( ~~> t `  J )  |`  ( ~H  ^m  NN ) )  <-> 
( <. f ,  x >.  e.  ( ~~> t `  J )  /\  f  e.  ( ~H  ^m  NN ) ) )
4440, 41, 433bitr4i 268 . . 3  |-  ( ( ( f : NN --> ~H  /\  x  e.  ~H )  /\  A. y  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( f `  k )  -h  x
) )  <  y
)  <->  <. f ,  x >.  e.  ( ( ~~> t `  J )  |`  ( ~H  ^m  NN ) ) )
454, 5, 443bitri 262 . 2  |-  ( <.
f ,  x >.  e. 
~~>v  <->  <. f ,  x >.  e.  ( ( ~~> t `  J )  |`  ( ~H  ^m  NN ) ) )
462, 3, 45eqrelriiv 4797 1  |-  ~~>v  =  ( ( ~~> t `  J
)  |`  ( ~H  ^m  NN ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   <.cop 3656   class class class wbr 4039   {copab 4092    |` cres 4707   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   1c1 8754    < clt 8883   NNcn 9762   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   * Metcxmt 16385   MetOpencmopn 16388   ~~> tclm 16972   NrmCVeccnv 21156   BaseSetcba 21158   IndMetcims 21163   ~Hchil 21515    +h cva 21516    .h csm 21517   normhcno 21519    -h cmv 21521    ~~>v chli 21523
This theorem is referenced by:  axhcompl-zf  21594  hlimadd  21788  hhlm  21794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-lm 16975  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ims 21173  df-hvsub 21567  df-hlim 21568
  Copyright terms: Public domain W3C validator