HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hva Structured version   Unicode version

Theorem h2hva 22482
Description: The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
h2h.2  |-  U  e.  NrmCVec
Assertion
Ref Expression
h2hva  |-  +h  =  ( +v `  U )

Proof of Theorem h2hva
StepHypRef Expression
1 eqid 2438 . . . 4  |-  ( +v
`  <. <.  +h  ,  .h  >. ,  normh >. )  =  ( +v `  <. <.  +h  ,  .h  >. ,  normh >. )
21vafval 22087 . . 3  |-  ( +v
`  <. <.  +h  ,  .h  >. ,  normh >. )  =  ( 1st `  ( 1st `  <. <.  +h  ,  .h  >. ,  normh >. ) )
3 opex 4430 . . . . 5  |-  <.  +h  ,  .h  >.  e.  _V
4 h2h.1 . . . . . . . 8  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
5 h2h.2 . . . . . . . 8  |-  U  e.  NrmCVec
64, 5eqeltrri 2509 . . . . . . 7  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
7 nvex 22095 . . . . . . 7  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  (  +h  e.  _V  /\  .h  e.  _V  /\  normh  e.  _V ) )
86, 7ax-mp 5 . . . . . 6  |-  (  +h  e.  _V  /\  .h  e.  _V  /\  normh  e.  _V )
98simp3i 969 . . . . 5  |-  normh  e.  _V
103, 9op1st 6358 . . . 4  |-  ( 1st `  <. <.  +h  ,  .h  >. ,  normh >. )  =  <.  +h  ,  .h  >.
1110fveq2i 5734 . . 3  |-  ( 1st `  ( 1st `  <. <.  +h  ,  .h  >. ,  normh >.
) )  =  ( 1st `  <.  +h  ,  .h  >. )
128simp1i 967 . . . 4  |-  +h  e.  _V
138simp2i 968 . . . 4  |-  .h  e.  _V
1412, 13op1st 6358 . . 3  |-  ( 1st `  <.  +h  ,  .h  >. )  =  +h
152, 11, 143eqtrri 2463 . 2  |-  +h  =  ( +v `  <. <.  +h  ,  .h  >. ,  normh >. )
164fveq2i 5734 . 2  |-  ( +v
`  U )  =  ( +v `  <. <.  +h  ,  .h  >. ,  normh >.
)
1715, 16eqtr4i 2461 1  |-  +h  =  ( +v `  U )
Colors of variables: wff set class
Syntax hints:    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958   <.cop 3819   ` cfv 5457   1stc1st 6350   NrmCVeccnv 22068   +vcpv 22069    +h cva 22428    .h csm 22429   normhcno 22431
This theorem is referenced by:  h2hvs  22485  axhfvadd-zf  22490  axhvcom-zf  22491  axhvass-zf  22492  axhvaddid-zf  22494  axhvdistr1-zf  22498  axhvdistr2-zf  22499  axhis2-zf  22503  hhva  22673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fo 5463  df-fv 5465  df-oprab 6088  df-1st 6352  df-vc 22030  df-nv 22076  df-va 22079
  Copyright terms: Public domain W3C validator