HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hvs Unicode version

Theorem h2hvs 21573
Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
h2h.2  |-  U  e.  NrmCVec
h2h.4  |-  ~H  =  ( BaseSet `  U )
Assertion
Ref Expression
h2hvs  |-  -h  =  ( -v `  U )

Proof of Theorem h2hvs
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hvsub 21567 . 2  |-  -h  =  ( x  e.  ~H ,  y  e.  ~H  |->  ( x  +h  ( -u 1  .h  y ) ) )
2 h2h.2 . . 3  |-  U  e.  NrmCVec
3 h2h.4 . . . 4  |-  ~H  =  ( BaseSet `  U )
4 h2h.1 . . . . 5  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
54, 2h2hva 21570 . . . 4  |-  +h  =  ( +v `  U )
64, 2h2hsm 21571 . . . 4  |-  .h  =  ( .s OLD `  U
)
7 eqid 2296 . . . 4  |-  ( -v
`  U )  =  ( -v `  U
)
83, 5, 6, 7nvmfval 21218 . . 3  |-  ( U  e.  NrmCVec  ->  ( -v `  U )  =  ( x  e.  ~H , 
y  e.  ~H  |->  ( x  +h  ( -u
1  .h  y ) ) ) )
92, 8ax-mp 8 . 2  |-  ( -v
`  U )  =  ( x  e.  ~H ,  y  e.  ~H  |->  ( x  +h  ( -u 1  .h  y ) ) )
101, 9eqtr4i 2319 1  |-  -h  =  ( -v `  U )
Colors of variables: wff set class
Syntax hints:    = wceq 1632    e. wcel 1696   <.cop 3656   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1c1 8754   -ucneg 9054   NrmCVeccnv 21156   BaseSetcba 21158   -vcnsb 21161   ~Hchil 21515    +h cva 21516    .h csm 21517   normhcno 21519    -h cmv 21521
This theorem is referenced by:  h2hmetdval  21574  hhvs  21765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055  df-neg 9056  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-hvsub 21567
  Copyright terms: Public domain W3C validator