MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hadass Structured version   Unicode version

Theorem hadass 1395
Description: Associative law for triple XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadass  |-  (hadd (
ph ,  ps ,  ch )  <->  ( ph  \/_  ( ps  \/_  ch ) ) )

Proof of Theorem hadass
StepHypRef Expression
1 df-had 1389 . 2  |-  (hadd (
ph ,  ps ,  ch )  <->  ( ( ph  \/_ 
ps )  \/_  ch ) )
2 xorass 1317 . 2  |-  ( ( ( ph  \/_  ps )  \/_  ch )  <->  ( ph  \/_  ( ps  \/_  ch ) ) )
31, 2bitri 241 1  |-  (hadd (
ph ,  ps ,  ch )  <->  ( ph  \/_  ( ps  \/_  ch ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/_ wxo 1313  haddwhad 1387
This theorem is referenced by:  hadcomb  1398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-xor 1314  df-had 1389
  Copyright terms: Public domain W3C validator