MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfnq Unicode version

Theorem halfnq 8600
Description: One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
halfnq  |-  ( A  e.  Q.  ->  E. x
( x  +Q  x
)  =  A )
Distinct variable group:    x, A

Proof of Theorem halfnq
StepHypRef Expression
1 distrnq 8585 . . . 4  |-  ( A  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
2 distrnq 8585 . . . . . . . 8  |-  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
3 1nq 8552 . . . . . . . . . . 11  |-  1Q  e.  Q.
4 addclnq 8569 . . . . . . . . . . 11  |-  ( ( 1Q  e.  Q.  /\  1Q  e.  Q. )  -> 
( 1Q  +Q  1Q )  e.  Q. )
53, 3, 4mp2an 653 . . . . . . . . . 10  |-  ( 1Q 
+Q  1Q )  e. 
Q.
6 recidnq 8589 . . . . . . . . . 10  |-  ( ( 1Q  +Q  1Q )  e.  Q.  ->  (
( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  1Q )
75, 6ax-mp 8 . . . . . . . . 9  |-  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  1Q
87, 7oveq12i 5870 . . . . . . . 8  |-  ( ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( 1Q  +Q  1Q )
92, 8eqtri 2303 . . . . . . 7  |-  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( 1Q  +Q  1Q )
109oveq1i 5868 . . . . . 6  |-  ( ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
117oveq2i 5869 . . . . . . 7  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  1Q )
12 mulassnq 8583 . . . . . . . 8  |-  ( ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
13 mulcomnq 8577 . . . . . . . . 9  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  =  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
1413oveq1i 5868 . . . . . . . 8  |-  ( ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( ( 1Q 
+Q  1Q )  .Q  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
1512, 14eqtr3i 2305 . . . . . . 7  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
16 recclnq 8590 . . . . . . . . 9  |-  ( ( 1Q  +Q  1Q )  e.  Q.  ->  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q. )
17 addclnq 8569 . . . . . . . . 9  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q.  /\  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q. )  ->  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q. )
1816, 16, 17syl2anc 642 . . . . . . . 8  |-  ( ( 1Q  +Q  1Q )  e.  Q.  ->  (
( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q. )
19 mulidnq 8587 . . . . . . . 8  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q.  ->  ( ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  1Q )  =  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
205, 18, 19mp2b 9 . . . . . . 7  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  1Q )  =  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
2111, 15, 203eqtr3i 2311 . . . . . 6  |-  ( ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
2210, 21, 73eqtr3i 2311 . . . . 5  |-  ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  1Q
2322oveq2i 5869 . . . 4  |-  ( A  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( A  .Q  1Q )
241, 23eqtr3i 2305 . . 3  |-  ( ( A  .Q  ( *Q
`  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( A  .Q  1Q )
25 mulidnq 8587 . . 3  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
2624, 25syl5eq 2327 . 2  |-  ( A  e.  Q.  ->  (
( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A )
27 ovex 5883 . . 3  |-  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
_V
28 oveq12 5867 . . . . 5  |-  ( ( x  =  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  /\  x  =  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  ->  (
x  +Q  x )  =  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
2928anidms 626 . . . 4  |-  ( x  =  ( A  .Q  ( *Q `  ( 1Q 
+Q  1Q ) ) )  ->  ( x  +Q  x )  =  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
3029eqeq1d 2291 . . 3  |-  ( x  =  ( A  .Q  ( *Q `  ( 1Q 
+Q  1Q ) ) )  ->  ( (
x  +Q  x )  =  A  <->  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A ) )
3127, 30spcev 2875 . 2  |-  ( ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A  ->  E. x
( x  +Q  x
)  =  A )
3226, 31syl 15 1  |-  ( A  e.  Q.  ->  E. x
( x  +Q  x
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1528    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   Q.cnq 8474   1Qc1q 8475    +Q cplq 8477    .Q cmq 8478   *Qcrq 8479
This theorem is referenced by:  nsmallnq  8601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541
  Copyright terms: Public domain W3C validator