MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcard Unicode version

Theorem harcard 7611
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harcard  |-  ( card `  (har `  A )
)  =  (har `  A )

Proof of Theorem harcard
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 harcl 7275 . 2  |-  (har `  A )  e.  On
2 harndom 7278 . . . . . . 7  |-  -.  (har `  A )  ~<_  A
3 simpll 730 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  x  e.  On )
4 simpr 447 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  (har `  A ) )
5 elharval 7277 . . . . . . . . . . 11  |-  ( y  e.  (har `  A
)  <->  ( y  e.  On  /\  y  ~<_  A ) )
64, 5sylib 188 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( y  e.  On  /\  y  ~<_  A ) )
76simpld 445 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  On )
8 ontri1 4426 . . . . . . . . 9  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  C_  y  <->  -.  y  e.  x ) )
93, 7, 8syl2anc 642 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( x  C_  y  <->  -.  y  e.  x ) )
10 simpllr 735 . . . . . . . . . 10  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  (har `  A
)  ~~  x )
11 vex 2791 . . . . . . . . . . . 12  |-  y  e. 
_V
12 ssdomg 6907 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
x  C_  y  ->  x  ~<_  y ) )
1311, 12ax-mp 8 . . . . . . . . . . 11  |-  ( x 
C_  y  ->  x  ~<_  y )
146simprd 449 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  ~<_  A )
15 domtr 6914 . . . . . . . . . . 11  |-  ( ( x  ~<_  y  /\  y  ~<_  A )  ->  x  ~<_  A )
1613, 14, 15syl2anr 464 . . . . . . . . . 10  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  x  ~<_  A )
17 endomtr 6919 . . . . . . . . . 10  |-  ( ( (har `  A )  ~~  x  /\  x  ~<_  A )  ->  (har `  A )  ~<_  A )
1810, 16, 17syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  (har `  A
)  ~<_  A )
1918ex 423 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( x  C_  y  ->  (har `  A
)  ~<_  A ) )
209, 19sylbird 226 . . . . . . 7  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( -.  y  e.  x  ->  (har
`  A )  ~<_  A ) )
212, 20mt3i 118 . . . . . 6  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  x )
2221ex 423 . . . . 5  |-  ( ( x  e.  On  /\  (har `  A )  ~~  x )  ->  (
y  e.  (har `  A )  ->  y  e.  x ) )
2322ssrdv 3185 . . . 4  |-  ( ( x  e.  On  /\  (har `  A )  ~~  x )  ->  (har `  A )  C_  x
)
2423ex 423 . . 3  |-  ( x  e.  On  ->  (
(har `  A )  ~~  x  ->  (har `  A )  C_  x
) )
2524rgen 2608 . 2  |-  A. x  e.  On  ( (har `  A )  ~~  x  ->  (har `  A )  C_  x )
26 iscard2 7609 . 2  |-  ( (
card `  (har `  A
) )  =  (har
`  A )  <->  ( (har `  A )  e.  On  /\ 
A. x  e.  On  ( (har `  A )  ~~  x  ->  (har `  A )  C_  x
) ) )
271, 25, 26mpbir2an 886 1  |-  ( card `  (har `  A )
)  =  (har `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   class class class wbr 4023   Oncon0 4392   ` cfv 5255    ~~ cen 6860    ~<_ cdom 6861  harchar 7270   cardccrd 7568
This theorem is referenced by:  cardprclem  7612  alephcard  7697  pwcfsdom  8205  hargch  8299
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-er 6660  df-en 6864  df-dom 6865  df-oi 7225  df-har 7272  df-card 7572
  Copyright terms: Public domain W3C validator