MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcard Structured version   Unicode version

Theorem harcard 7865
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harcard  |-  ( card `  (har `  A )
)  =  (har `  A )

Proof of Theorem harcard
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 harcl 7529 . 2  |-  (har `  A )  e.  On
2 harndom 7532 . . . . . . 7  |-  -.  (har `  A )  ~<_  A
3 simpll 731 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  x  e.  On )
4 simpr 448 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  (har `  A ) )
5 elharval 7531 . . . . . . . . . . 11  |-  ( y  e.  (har `  A
)  <->  ( y  e.  On  /\  y  ~<_  A ) )
64, 5sylib 189 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( y  e.  On  /\  y  ~<_  A ) )
76simpld 446 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  On )
8 ontri1 4615 . . . . . . . . 9  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  C_  y  <->  -.  y  e.  x ) )
93, 7, 8syl2anc 643 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( x  C_  y  <->  -.  y  e.  x ) )
10 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  (har `  A
)  ~~  x )
11 vex 2959 . . . . . . . . . . . 12  |-  y  e. 
_V
12 ssdomg 7153 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
x  C_  y  ->  x  ~<_  y ) )
1311, 12ax-mp 8 . . . . . . . . . . 11  |-  ( x 
C_  y  ->  x  ~<_  y )
146simprd 450 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  ~<_  A )
15 domtr 7160 . . . . . . . . . . 11  |-  ( ( x  ~<_  y  /\  y  ~<_  A )  ->  x  ~<_  A )
1613, 14, 15syl2anr 465 . . . . . . . . . 10  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  x  ~<_  A )
17 endomtr 7165 . . . . . . . . . 10  |-  ( ( (har `  A )  ~~  x  /\  x  ~<_  A )  ->  (har `  A )  ~<_  A )
1810, 16, 17syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  (har `  A
)  ~<_  A )
1918ex 424 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( x  C_  y  ->  (har `  A
)  ~<_  A ) )
209, 19sylbird 227 . . . . . . 7  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( -.  y  e.  x  ->  (har
`  A )  ~<_  A ) )
212, 20mt3i 120 . . . . . 6  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  x )
2221ex 424 . . . . 5  |-  ( ( x  e.  On  /\  (har `  A )  ~~  x )  ->  (
y  e.  (har `  A )  ->  y  e.  x ) )
2322ssrdv 3354 . . . 4  |-  ( ( x  e.  On  /\  (har `  A )  ~~  x )  ->  (har `  A )  C_  x
)
2423ex 424 . . 3  |-  ( x  e.  On  ->  (
(har `  A )  ~~  x  ->  (har `  A )  C_  x
) )
2524rgen 2771 . 2  |-  A. x  e.  On  ( (har `  A )  ~~  x  ->  (har `  A )  C_  x )
26 iscard2 7863 . 2  |-  ( (
card `  (har `  A
) )  =  (har
`  A )  <->  ( (har `  A )  e.  On  /\ 
A. x  e.  On  ( (har `  A )  ~~  x  ->  (har `  A )  C_  x
) ) )
271, 25, 26mpbir2an 887 1  |-  ( card `  (har `  A )
)  =  (har `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    C_ wss 3320   class class class wbr 4212   Oncon0 4581   ` cfv 5454    ~~ cen 7106    ~<_ cdom 7107  harchar 7524   cardccrd 7822
This theorem is referenced by:  cardprclem  7866  alephcard  7951  pwcfsdom  8458  hargch  8552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-riota 6549  df-recs 6633  df-er 6905  df-en 7110  df-dom 7111  df-oi 7479  df-har 7526  df-card 7826
  Copyright terms: Public domain W3C validator