MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hargch Unicode version

Theorem hargch 8315
Description: If  A  +  ~~  ~P A, then  A is a GCH-set. The much simpler converse to gchhar 8309. (Contributed by Mario Carneiro, 2-Jun-2015.)
Assertion
Ref Expression
hargch  |-  ( (har
`  A )  ~~  ~P A  ->  A  e. GCH )

Proof of Theorem hargch
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 harcl 7291 . . . . . . . . . . . . . 14  |-  (har `  A )  e.  On
2 sdomdom 6905 . . . . . . . . . . . . . 14  |-  ( x 
~<  (har `  A )  ->  x  ~<_  (har `  A
) )
3 ondomen 7680 . . . . . . . . . . . . . 14  |-  ( ( (har `  A )  e.  On  /\  x  ~<_  (har
`  A ) )  ->  x  e.  dom  card )
41, 2, 3sylancr 644 . . . . . . . . . . . . 13  |-  ( x 
~<  (har `  A )  ->  x  e.  dom  card )
5 onenon 7598 . . . . . . . . . . . . . 14  |-  ( (har
`  A )  e.  On  ->  (har `  A
)  e.  dom  card )
61, 5ax-mp 8 . . . . . . . . . . . . 13  |-  (har `  A )  e.  dom  card
7 cardsdom2 7637 . . . . . . . . . . . . 13  |-  ( ( x  e.  dom  card  /\  (har `  A )  e.  dom  card )  ->  (
( card `  x )  e.  ( card `  (har `  A ) )  <->  x  ~<  (har
`  A ) ) )
84, 6, 7sylancl 643 . . . . . . . . . . . 12  |-  ( x 
~<  (har `  A )  ->  ( ( card `  x
)  e.  ( card `  (har `  A )
)  <->  x  ~<  (har `  A ) ) )
98ibir 233 . . . . . . . . . . 11  |-  ( x 
~<  (har `  A )  ->  ( card `  x
)  e.  ( card `  (har `  A )
) )
10 harcard 7627 . . . . . . . . . . 11  |-  ( card `  (har `  A )
)  =  (har `  A )
119, 10syl6eleq 2386 . . . . . . . . . 10  |-  ( x 
~<  (har `  A )  ->  ( card `  x
)  e.  (har `  A ) )
12 elharval 7293 . . . . . . . . . . 11  |-  ( (
card `  x )  e.  (har `  A )  <->  ( ( card `  x
)  e.  On  /\  ( card `  x )  ~<_  A ) )
1312simprbi 450 . . . . . . . . . 10  |-  ( (
card `  x )  e.  (har `  A )  ->  ( card `  x
)  ~<_  A )
1411, 13syl 15 . . . . . . . . 9  |-  ( x 
~<  (har `  A )  ->  ( card `  x
)  ~<_  A )
15 cardid2 7602 . . . . . . . . . 10  |-  ( x  e.  dom  card  ->  (
card `  x )  ~~  x )
16 domen1 7019 . . . . . . . . . 10  |-  ( (
card `  x )  ~~  x  ->  ( (
card `  x )  ~<_  A 
<->  x  ~<_  A ) )
174, 15, 163syl 18 . . . . . . . . 9  |-  ( x 
~<  (har `  A )  ->  ( ( card `  x
)  ~<_  A  <->  x  ~<_  A ) )
1814, 17mpbid 201 . . . . . . . 8  |-  ( x 
~<  (har `  A )  ->  x  ~<_  A )
19 domnsym 7003 . . . . . . . 8  |-  ( x  ~<_  A  ->  -.  A  ~<  x )
2018, 19syl 15 . . . . . . 7  |-  ( x 
~<  (har `  A )  ->  -.  A  ~<  x
)
2120con2i 112 . . . . . 6  |-  ( A 
~<  x  ->  -.  x  ~<  (har `  A )
)
22 sdomen2 7022 . . . . . . 7  |-  ( (har
`  A )  ~~  ~P A  ->  ( x 
~<  (har `  A )  <->  x 
~<  ~P A ) )
2322notbid 285 . . . . . 6  |-  ( (har
`  A )  ~~  ~P A  ->  ( -.  x  ~<  (har `  A
)  <->  -.  x  ~<  ~P A ) )
2421, 23syl5ib 210 . . . . 5  |-  ( (har
`  A )  ~~  ~P A  ->  ( A 
~<  x  ->  -.  x  ~<  ~P A ) )
25 imnan 411 . . . . 5  |-  ( ( A  ~<  x  ->  -.  x  ~<  ~P A
)  <->  -.  ( A  ~<  x  /\  x  ~<  ~P A ) )
2624, 25sylib 188 . . . 4  |-  ( (har
`  A )  ~~  ~P A  ->  -.  ( A  ~<  x  /\  x  ~<  ~P A ) )
2726alrimiv 1621 . . 3  |-  ( (har
`  A )  ~~  ~P A  ->  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) )
2827olcd 382 . 2  |-  ( (har
`  A )  ~~  ~P A  ->  ( A  e.  Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) )
29 relen 6884 . . . . 5  |-  Rel  ~~
3029brrelex2i 4746 . . . 4  |-  ( (har
`  A )  ~~  ~P A  ->  ~P A  e.  _V )
31 pwexb 4580 . . . 4  |-  ( A  e.  _V  <->  ~P A  e.  _V )
3230, 31sylibr 203 . . 3  |-  ( (har
`  A )  ~~  ~P A  ->  A  e. 
_V )
33 elgch 8260 . . 3  |-  ( A  e.  _V  ->  ( A  e. GCH  <->  ( A  e. 
Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) ) )
3432, 33syl 15 . 2  |-  ( (har
`  A )  ~~  ~P A  ->  ( A  e. GCH 
<->  ( A  e.  Fin  \/ 
A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A ) ) ) )
3528, 34mpbird 223 1  |-  ( (har
`  A )  ~~  ~P A  ->  A  e. GCH )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   A.wal 1530    e. wcel 1696   _Vcvv 2801   ~Pcpw 3638   class class class wbr 4039   Oncon0 4408   dom cdm 4705   ` cfv 5271    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   Fincfn 6879  harchar 7286   cardccrd 7584  GCHcgch 8258
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 6320  df-recs 6404  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-oi 7241  df-har 7288  df-card 7588  df-gch 8259
  Copyright terms: Public domain W3C validator