MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd4 Unicode version

Theorem harmonicbnd4 20716
Description: The asymptotic behavior of  sum_ m  <_  A ,  1  /  m  =  log A  +  gamma  +  O ( 1  /  A ). (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
harmonicbnd4  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
Distinct variable group:    A, m

Proof of Theorem harmonicbnd4
StepHypRef Expression
1 fzfid 11239 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1 ... ( |_ `  A ) )  e. 
Fin )
2 elfznn 11012 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  NN )
32adantl 453 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  NN )
43nnrecred 9977 . . . . . 6  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  m )  e.  RR )
51, 4fsumrecl 12455 . . . . 5  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  e.  RR )
65recnd 9047 . . . 4  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  e.  CC )
7 relogcl 20340 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
87recnd 9047 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  CC )
9 emre 20711 . . . . . 6  |-  gamma  e.  RR
109a1i 11 . . . . 5  |-  ( A  e.  RR+  ->  gamma  e.  RR )
1110recnd 9047 . . . 4  |-  ( A  e.  RR+  ->  gamma  e.  CC )
126, 8, 11subsub4d 9374 . . 3  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  gamma )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )
1312fveq2d 5672 . 2  |-  ( A  e.  RR+  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  gamma ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) )
14 rpreccl 10567 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR+ )
1514rpred 10580 . . . . 5  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR )
16 resubcl 9297 . . . . 5  |-  ( (
gamma  e.  RR  /\  (
1  /  A )  e.  RR )  -> 
( gamma  -  ( 1  /  A ) )  e.  RR )
179, 15, 16sylancr 645 . . . 4  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  e.  RR )
18 rprege0 10558 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A ) )
19 flge0nn0 11152 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
2018, 19syl 16 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( |_
`  A )  e. 
NN0 )
21 nn0p1nn 10191 . . . . . . . 8  |-  ( ( |_ `  A )  e.  NN0  ->  ( ( |_ `  A )  +  1 )  e.  NN )
2220, 21syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  NN )
2322nnrpd 10579 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  RR+ )
24 relogcl 20340 . . . . . 6  |-  ( ( ( |_ `  A
)  +  1 )  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  RR )
2523, 24syl 16 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  RR )
265, 25resubcld 9397 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR )
275, 7resubcld 9397 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  e.  RR )
2822nnrecred 9977 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  e.  RR )
29 fzfid 11239 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( 1 ... ( ( |_
`  A )  +  1 ) )  e. 
Fin )
30 elfznn 11012 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) )  ->  m  e.  NN )
3130adantl 453 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  m  e.  NN )
3231nnrecred 9977 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  (
1  /  m )  e.  RR )
3329, 32fsumrecl 12455 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  e.  RR )
3433, 25resubcld 9397 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR )
35 harmonicbnd 20709 . . . . . . . 8  |-  ( ( ( |_ `  A
)  +  1 )  e.  NN  ->  ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 ) )
3622, 35syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( gamma [,] 1 ) )
37 1re 9023 . . . . . . . . 9  |-  1  e.  RR
389, 37elicc2i 10908 . . . . . . . 8  |-  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 )  <->  ( ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  RR  /\ 
gamma  <_  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  /\  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  <_  1 ) )
3938simp2bi 973 . . . . . . 7  |-  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  (
gamma [,] 1 )  ->  gamma  <_  ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
4036, 39syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  gamma  <_  ( sum_ m  e.  ( 1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) ) )
41 rpre 10550 . . . . . . . 8  |-  ( A  e.  RR+  ->  A  e.  RR )
42 fllep1 11137 . . . . . . . 8  |-  ( A  e.  RR  ->  A  <_  ( ( |_ `  A )  +  1 ) )
4341, 42syl 16 . . . . . . 7  |-  ( A  e.  RR+  ->  A  <_ 
( ( |_ `  A )  +  1 ) )
44 rpregt0 10557 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
4522nnred 9947 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  RR )
4622nngt0d 9975 . . . . . . . 8  |-  ( A  e.  RR+  ->  0  < 
( ( |_ `  A )  +  1 ) )
47 lerec 9824 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( ( |_ `  A )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  A )  +  1 ) ) )  -> 
( A  <_  (
( |_ `  A
)  +  1 )  <-> 
( 1  /  (
( |_ `  A
)  +  1 ) )  <_  ( 1  /  A ) ) )
4844, 45, 46, 47syl12anc 1182 . . . . . . 7  |-  ( A  e.  RR+  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( 1  /  ( ( |_
`  A )  +  1 ) )  <_ 
( 1  /  A
) ) )
4943, 48mpbid 202 . . . . . 6  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  <_ 
( 1  /  A
) )
5010, 28, 34, 15, 40, 49le2subd 9577 . . . . 5  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( ( sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  -  ( log `  ( ( |_
`  A )  +  1 ) ) )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
5133recnd 9047 . . . . . . 7  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  e.  CC )
5225recnd 9047 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  e.  CC )
5328recnd 9047 . . . . . . 7  |-  ( A  e.  RR+  ->  ( 1  /  ( ( |_
`  A )  +  1 ) )  e.  CC )
5451, 52, 53sub32d 9375 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  -  (
1  /  ( ( |_ `  A )  +  1 ) ) )  =  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
55 nnuz 10453 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
5622, 55syl6eleq 2477 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  +  1 )  e.  ( ZZ>= `  1 )
)
5732recnd 9047 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) )  ->  (
1  /  m )  e.  CC )
58 oveq2 6028 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  A )  +  1 )  ->  (
1  /  m )  =  ( 1  / 
( ( |_ `  A )  +  1 ) ) )
5956, 57, 58fsumm1 12464 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... ( ( ( |_ `  A )  +  1 )  - 
1 ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6020nn0cnd 10208 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  CC )
61 ax-1cn 8981 . . . . . . . . . . . . . 14  |-  1  e.  CC
62 pncan 9243 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  A )  +  1 )  -  1 )  =  ( |_
`  A ) )
6360, 61, 62sylancl 644 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  -  1 )  =  ( |_ `  A
) )
6463oveq2d 6036 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1 ... ( ( ( |_ `  A )  +  1 )  - 
1 ) )  =  ( 1 ... ( |_ `  A ) ) )
6564sumeq1d 12422 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( ( |_ `  A )  +  1 )  -  1 ) ) ( 1  /  m )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
6665oveq1d 6035 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( ( |_
`  A )  +  1 )  -  1 ) ) ( 1  /  m )  +  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6759, 66eqtrd 2419 . . . . . . . . 9  |-  ( A  e.  RR+  ->  sum_ m  e.  ( 1 ... (
( |_ `  A
)  +  1 ) ) ( 1  /  m )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
6867oveq1d 6035 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  +  ( 1  /  ( ( |_
`  A )  +  1 ) ) )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) ) )
696, 53pncand 9344 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  +  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
7068, 69eqtrd 2419 . . . . . . 7  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( ( |_ `  A )  +  1 ) ) ( 1  /  m )  -  ( 1  /  (
( |_ `  A
)  +  1 ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) )
7170oveq1d 6035 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( 1  / 
( ( |_ `  A )  +  1 ) ) )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
7254, 71eqtrd 2419 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( ( |_
`  A )  +  1 ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  -  (
1  /  ( ( |_ `  A )  +  1 ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
7350, 72breqtrd 4177 . . . 4  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
74 logleb 20365 . . . . . . 7  |-  ( ( A  e.  RR+  /\  (
( |_ `  A
)  +  1 )  e.  RR+ )  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
7523, 74mpdan 650 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  <_  ( ( |_
`  A )  +  1 )  <->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) ) )
7643, 75mpbid 202 . . . . 5  |-  ( A  e.  RR+  ->  ( log `  A )  <_  ( log `  ( ( |_
`  A )  +  1 ) ) )
777, 25, 5, 76lesub2dd 9575 . . . 4  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) ) )
7817, 26, 27, 73, 77letrd 9159 . . 3  |-  ( A  e.  RR+  ->  ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) ) )
7927, 15resubcld 9397 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  e.  RR )
8015recnd 9047 . . . . . . 7  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  CC )
816, 8, 80subsub4d 9374 . . . . . 6  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  ( 1  /  A ) ) ) )
827, 15readdcld 9048 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( log `  A )  +  ( 1  /  A ) )  e.  RR )
83 id 20 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR+ )
8423, 83relogdivd 20388 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  =  ( ( log `  (
( |_ `  A
)  +  1 ) )  -  ( log `  A ) ) )
85 rerpdivcl 10571 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  A )  +  1 )  e.  RR  /\  A  e.  RR+ )  -> 
( ( ( |_
`  A )  +  1 )  /  A
)  e.  RR )
8645, 85mpancom 651 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  e.  RR )
8737a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  1  e.  RR )
8887, 15readdcld 9048 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  e.  RR )
8915reefcld 12617 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( exp `  ( 1  /  A
) )  e.  RR )
9061a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  1  e.  CC )
91 rpcnne0 10561 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A  =/=  0 ) )
92 divdir 9633 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( ( ( |_
`  A )  +  1 )  /  A
)  =  ( ( ( |_ `  A
)  /  A )  +  ( 1  /  A ) ) )
9360, 90, 91, 92syl3anc 1184 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  =  ( ( ( |_
`  A )  /  A )  +  ( 1  /  A ) ) )
94 reflcl 11132 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
9541, 94syl 16 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( |_
`  A )  e.  RR )
96 rerpdivcl 10571 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  A
)  e.  RR  /\  A  e.  RR+ )  -> 
( ( |_ `  A )  /  A
)  e.  RR )
9795, 96mpancom 651 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  /  A )  e.  RR )
98 flle 11135 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
9941, 98syl 16 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_  A )
100 rpcn 10552 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR+  ->  A  e.  CC )
101100mulid1d 9038 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  ( A  x.  1 )  =  A )
10299, 101breqtrrd 4179 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( |_
`  A )  <_ 
( A  x.  1 ) )
103 ledivmul 9815 . . . . . . . . . . . . . . . 16  |-  ( ( ( |_ `  A
)  e.  RR  /\  1  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( ( |_
`  A )  /  A )  <_  1  <->  ( |_ `  A )  <_  ( A  x.  1 ) ) )
10495, 87, 44, 103syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  /  A )  <_  1  <->  ( |_ `  A )  <_  ( A  x.  1 ) ) )
105102, 104mpbird 224 . . . . . . . . . . . . . 14  |-  ( A  e.  RR+  ->  ( ( |_ `  A )  /  A )  <_ 
1 )
10697, 87, 15, 105leadd1dd 9572 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  /  A )  +  ( 1  /  A ) )  <_ 
( 1  +  ( 1  /  A ) ) )
10793, 106eqbrtrd 4173 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  <_ 
( 1  +  ( 1  /  A ) ) )
108 efgt1p 12643 . . . . . . . . . . . . . 14  |-  ( ( 1  /  A )  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  < 
( exp `  (
1  /  A ) ) )
10914, 108syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  < 
( exp `  (
1  /  A ) ) )
11088, 89, 109ltled 9153 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( 1  +  ( 1  /  A ) )  <_ 
( exp `  (
1  /  A ) ) )
11186, 88, 89, 107, 110letrd 9159 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  <_ 
( exp `  (
1  /  A ) ) )
112 rpdivcl 10566 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  A )  +  1 )  e.  RR+  /\  A  e.  RR+ )  ->  (
( ( |_ `  A )  +  1 )  /  A )  e.  RR+ )
11323, 112mpancom 651 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( ( ( |_ `  A
)  +  1 )  /  A )  e.  RR+ )
11415rpefcld 12633 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  ( exp `  ( 1  /  A
) )  e.  RR+ )
115113, 114logled 20389 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( ( ( ( |_ `  A )  +  1 )  /  A )  <_  ( exp `  (
1  /  A ) )  <->  ( log `  (
( ( |_ `  A )  +  1 )  /  A ) )  <_  ( log `  ( exp `  (
1  /  A ) ) ) ) )
116111, 115mpbid 202 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  <_  ( log `  ( exp `  (
1  /  A ) ) ) )
11715relogefd 20390 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  ( exp `  (
1  /  A ) ) )  =  ( 1  /  A ) )
118116, 117breqtrd 4177 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( log `  ( ( ( |_
`  A )  +  1 )  /  A
) )  <_  (
1  /  A ) )
11984, 118eqbrtrrd 4175 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( log `  ( ( |_ `  A )  +  1 ) )  -  ( log `  A
) )  <_  (
1  /  A ) )
12025, 7, 15lesubadd2d 9557 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( ( log `  (
( |_ `  A
)  +  1 ) )  -  ( log `  A ) )  <_ 
( 1  /  A
)  <->  ( log `  (
( |_ `  A
)  +  1 ) )  <_  ( ( log `  A )  +  ( 1  /  A
) ) ) )
121119, 120mpbid 202 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  ( ( |_ `  A )  +  1 ) )  <_  (
( log `  A
)  +  ( 1  /  A ) ) )
12225, 82, 5, 121lesub2dd 9575 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  ( 1  /  A ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
12381, 122eqbrtrd 4173 . . . . 5  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) ) )
124 harmonicbnd3 20713 . . . . . . 7  |-  ( ( |_ `  A )  e.  NN0  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( 0 [,] gamma ) )
12520, 124syl 16 . . . . . 6  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  ( 0 [,] gamma ) )
126 0re 9024 . . . . . . . 8  |-  0  e.  RR
127126, 9elicc2i 10908 . . . . . . 7  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  ( 0 [,] gamma )  <->  ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  e.  RR  /\  0  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  /\  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma ) )
128127simp3bi 974 . . . . . 6  |-  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  (
( |_ `  A
)  +  1 ) ) )  e.  ( 0 [,] gamma )  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma )
129125, 128syl 16 . . . . 5  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  ( ( |_ `  A )  +  1 ) ) )  <_  gamma )
13079, 26, 10, 123, 129letrd 9159 . . . 4  |-  ( A  e.  RR+  ->  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  (
1  /  A ) )  <_  gamma )
13127, 15, 10lesubaddd 9555 . . . 4  |-  ( A  e.  RR+  ->  ( ( ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  ( 1  /  A
) )  <_  gamma  <->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  <_  ( gamma  +  ( 1  /  A
) ) ) )
132130, 131mpbid 202 . . 3  |-  ( A  e.  RR+  ->  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( log `  A ) )  <_  ( gamma  +  ( 1  /  A
) ) )
13327, 10, 15absdifled 12164 . . 3  |-  ( A  e.  RR+  ->  ( ( abs `  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( log `  A
) )  -  gamma ) )  <_  ( 1  /  A )  <->  ( ( gamma  -  ( 1  /  A ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  /\  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( log `  A ) )  <_ 
( gamma  +  ( 1  /  A ) ) ) ) )
13478, 132, 133mpbir2and 889 . 2  |-  ( A  e.  RR+  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
)  -  ( log `  A ) )  -  gamma ) )  <_  (
1  /  A ) )
13513, 134eqbrtrrd 4175 1  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    < clt 9053    <_ cle 9054    - cmin 9223    / cdiv 9609   NNcn 9932   NN0cn0 10153   ZZ>=cuz 10420   RR+crp 10544   [,]cicc 10851   ...cfz 10975   |_cfl 11128   abscabs 11966   sum_csu 12406   expce 12591   logclog 20319   gammacem 20697
This theorem is referenced by:  mulogsumlem  21092  mulog2sumlem1  21095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-shft 11809  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-sum 12407  df-ef 12597  df-e 12598  df-sin 12599  df-cos 12600  df-pi 12602  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-lp 17123  df-perf 17124  df-cn 17213  df-cnp 17214  df-haus 17301  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cncf 18779  df-limc 19620  df-dv 19621  df-log 20321  df-em 20698
  Copyright terms: Public domain W3C validator