MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogslem1 Unicode version

Theorem hartogslem1 7273
Description: Lemma for hartogs 7275. (Contributed by Mario Carneiro, 14-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
hartogslem.2  |-  F  =  { <. r ,  y
>.  |  ( (
( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
hartogslem.3  |-  R  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( f `
 w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }
Assertion
Ref Expression
hartogslem1  |-  ( dom 
F  C_  ~P ( A  X.  A )  /\  Fun  F  /\  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } ) )
Distinct variable groups:    f, s,
t, w, y, z   
f, r, x, A, y    R, r, x    V, r, y
Allowed substitution hints:    A( z, w, t, s)    R( y, z, w, t, f, s)    F( x, y, z, w, t, f, s, r)    V( x, z, w, t, f, s)

Proof of Theorem hartogslem1
StepHypRef Expression
1 hartogslem.2 . . . . 5  |-  F  =  { <. r ,  y
>.  |  ( (
( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
21dmeqi 4896 . . . 4  |-  dom  F  =  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
3 dmopab 4905 . . . 4  |-  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  =  { r  |  E. y ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
42, 3eqtri 2316 . . 3  |-  dom  F  =  { r  |  E. y ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
5 simp3 957 . . . . . . . 8  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  r  C_  ( dom  r  X.  dom  r
) )
6 simp1 955 . . . . . . . . 9  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  dom  r  C_  A )
7 xpss12 4808 . . . . . . . . 9  |-  ( ( dom  r  C_  A  /\  dom  r  C_  A
)  ->  ( dom  r  X.  dom  r ) 
C_  ( A  X.  A ) )
86, 6, 7syl2anc 642 . . . . . . . 8  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  ( dom  r  X.  dom  r )  C_  ( A  X.  A
) )
95, 8sstrd 3202 . . . . . . 7  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  r  C_  ( A  X.  A ) )
10 vex 2804 . . . . . . . 8  |-  r  e. 
_V
1110elpw 3644 . . . . . . 7  |-  ( r  e.  ~P ( A  X.  A )  <->  r  C_  ( A  X.  A
) )
129, 11sylibr 203 . . . . . 6  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  r  e.  ~P ( A  X.  A
) )
1312ad2antrr 706 . . . . 5  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  r  e.  ~P ( A  X.  A
) )
1413exlimiv 1624 . . . 4  |-  ( E. y ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) )  ->  r  e.  ~P ( A  X.  A
) )
1514abssi 3261 . . 3  |-  { r  |  E. y ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  C_  ~P ( A  X.  A )
164, 15eqsstri 3221 . 2  |-  dom  F  C_ 
~P ( A  X.  A )
17 funopab4 5305 . . 3  |-  Fun  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
181funeqi 5291 . . 3  |-  ( Fun 
F  <->  Fun  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) } )
1917, 18mpbir 200 . 2  |-  Fun  F
20 breq1 4042 . . . . . 6  |-  ( x  =  y  ->  (
x  ~<_  A  <->  y  ~<_  A ) )
2120elrab 2936 . . . . 5  |-  ( y  e.  { x  e.  On  |  x  ~<_  A }  <->  ( y  e.  On  /\  y  ~<_  A ) )
22 brdomi 6889 . . . . . . 7  |-  ( y  ~<_  A  ->  E. f 
f : y -1-1-> A
)
23 f1f 5453 . . . . . . . . . . . . . 14  |-  ( f : y -1-1-> A  -> 
f : y --> A )
2423adantl 452 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f : y --> A )
25 frn 5411 . . . . . . . . . . . . 13  |-  ( f : y --> A  ->  ran  f  C_  A )
2624, 25syl 15 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ran  f  C_  A )
27 resss 4995 . . . . . . . . . . . . . . 15  |-  (  _I  |`  ran  f )  C_  _I
28 ssun2 3352 . . . . . . . . . . . . . . 15  |-  _I  C_  ( R  u.  _I  )
2927, 28sstri 3201 . . . . . . . . . . . . . 14  |-  (  _I  |`  ran  f )  C_  ( R  u.  _I  )
30 f1oi 5527 . . . . . . . . . . . . . . 15  |-  (  _I  |`  ran  f ) : ran  f -1-1-onto-> ran  f
31 f1of 5488 . . . . . . . . . . . . . . 15  |-  ( (  _I  |`  ran  f ) : ran  f -1-1-onto-> ran  f  ->  (  _I  |`  ran  f
) : ran  f --> ran  f )
32 fssxp 5416 . . . . . . . . . . . . . . 15  |-  ( (  _I  |`  ran  f ) : ran  f --> ran  f  ->  (  _I  |` 
ran  f )  C_  ( ran  f  X.  ran  f ) )
3330, 31, 32mp2b 9 . . . . . . . . . . . . . 14  |-  (  _I  |`  ran  f )  C_  ( ran  f  X.  ran  f )
3429, 33ssini 3405 . . . . . . . . . . . . 13  |-  (  _I  |`  ran  f )  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f
) )
3534a1i 10 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) )
36 inss2 3403 . . . . . . . . . . . . 13  |-  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f )
3736a1i 10 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) )
3826, 35, 373jca 1132 . . . . . . . . . . 11  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ran  f  C_  A  /\  (  _I  |`  ran  f )  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f
) )  /\  (
( R  u.  _I  )  i^i  ( ran  f  X.  ran  f ) ) 
C_  ( ran  f  X.  ran  f ) ) )
39 eloni 4418 . . . . . . . . . . . . . . 15  |-  ( y  e.  On  ->  Ord  y )
40 ordwe 4421 . . . . . . . . . . . . . . 15  |-  ( Ord  y  ->  _E  We  y )
4139, 40syl 15 . . . . . . . . . . . . . 14  |-  ( y  e.  On  ->  _E  We  y )
4241adantr 451 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  _E  We  y
)
43 f1f1orn 5499 . . . . . . . . . . . . . . . . 17  |-  ( f : y -1-1-> A  -> 
f : y -1-1-onto-> ran  f
)
4443adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f : y -1-1-onto-> ran  f )
45 hartogslem.3 . . . . . . . . . . . . . . . 16  |-  R  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( f `
 w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }
46 f1oiso 5864 . . . . . . . . . . . . . . . 16  |-  ( ( f : y -1-1-onto-> ran  f  /\  R  =  { <. s ,  t >.  |  E. w  e.  y  E. z  e.  y  ( ( s  =  ( f `  w
)  /\  t  =  ( f `  z
) )  /\  w  _E  z ) } )  ->  f  Isom  _E  ,  R  ( y ,  ran  f ) )
4744, 45, 46sylancl 643 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f  Isom  _E  ,  R  ( y ,  ran  f ) )
48 isores2 5846 . . . . . . . . . . . . . . 15  |-  ( f 
Isom  _E  ,  R  ( y ,  ran  f )  <->  f  Isom  _E  ,  ( R  i^i  ( ran  f  X.  ran  f ) ) ( y ,  ran  f
) )
4947, 48sylib 188 . . . . . . . . . . . . . 14  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f  Isom  _E  , 
( R  i^i  ( ran  f  X.  ran  f
) ) ( y ,  ran  f ) )
50 isowe 5862 . . . . . . . . . . . . . 14  |-  ( f 
Isom  _E  ,  ( R  i^i  ( ran  f  X.  ran  f ) ) ( y ,  ran  f )  ->  (  _E  We  y  <->  ( R  i^i  ( ran  f  X. 
ran  f ) )  We  ran  f ) )
5149, 50syl 15 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  (  _E  We  y 
<->  ( R  i^i  ( ran  f  X.  ran  f
) )  We  ran  f ) )
5242, 51mpbid 201 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( R  i^i  ( ran  f  X.  ran  f ) )  We 
ran  f )
53 weso 4400 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  i^i  ( ran  f  X.  ran  f
) )  We  ran  f  ->  ( R  i^i  ( ran  f  X.  ran  f ) )  Or 
ran  f )
5452, 53syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( R  i^i  ( ran  f  X.  ran  f ) )  Or 
ran  f )
55 inss2 3403 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  i^i  ( ran  f  X.  ran  f ) ) 
C_  ( ran  f  X.  ran  f )
5655brel 4753 . . . . . . . . . . . . . . . . . . . 20  |-  ( x ( R  i^i  ( ran  f  X.  ran  f
) ) x  -> 
( x  e.  ran  f  /\  x  e.  ran  f ) )
5756simpld 445 . . . . . . . . . . . . . . . . . . 19  |-  ( x ( R  i^i  ( ran  f  X.  ran  f
) ) x  ->  x  e.  ran  f )
58 sonr 4351 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  Or  ran  f  /\  x  e.  ran  f )  ->  -.  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )
5954, 57, 58syl2an 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  On  /\  f : y -1-1-> A
)  /\  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )  ->  -.  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )
6059ex 423 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( x ( R  i^i  ( ran  f  X.  ran  f
) ) x  ->  -.  x ( R  i^i  ( ran  f  X.  ran  f ) ) x ) )
6160pm2.01d 161 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  -.  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )
6261alrimiv 1621 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  A. x  -.  x
( R  i^i  ( ran  f  X.  ran  f
) ) x )
63 intirr 5077 . . . . . . . . . . . . . . 15  |-  ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  i^i  _I  )  =  (/)  <->  A. x  -.  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )
6462, 63sylibr 203 . . . . . . . . . . . . . 14  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( R  i^i  ( ran  f  X.  ran  f ) )  i^i  _I  )  =  (/) )
65 disj3 3512 . . . . . . . . . . . . . 14  |-  ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  i^i  _I  )  =  (/)  <->  ( R  i^i  ( ran  f  X. 
ran  f ) )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) )
6664, 65sylib 188 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( R  i^i  ( ran  f  X.  ran  f ) )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) )
67 weeq1 4397 . . . . . . . . . . . . 13  |-  ( ( R  i^i  ( ran  f  X.  ran  f
) )  =  ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  )  ->  ( ( R  i^i  ( ran  f  X.  ran  f ) )  We  ran  f  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
6866, 67syl 15 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( R  i^i  ( ran  f  X.  ran  f ) )  We  ran  f  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
6952, 68mpbid 201 . . . . . . . . . . 11  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f )
7039adantr 451 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  Ord  y )
71 isoeq3 5834 . . . . . . . . . . . . . . 15  |-  ( ( R  i^i  ( ran  f  X.  ran  f
) )  =  ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  )  ->  ( f  Isom  _E  ,  ( R  i^i  ( ran  f  X.  ran  f ) ) ( y ,  ran  f
)  <->  f  Isom  _E  , 
(  ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ( y ,  ran  f ) ) )
7266, 71syl 15 . . . . . . . . . . . . . 14  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( f  Isom  _E  ,  ( R  i^i  ( ran  f  X.  ran  f ) ) ( y ,  ran  f
)  <->  f  Isom  _E  , 
(  ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ( y ,  ran  f ) ) )
7349, 72mpbid 201 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f  Isom  _E  , 
(  ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ( y ,  ran  f ) )
74 vex 2804 . . . . . . . . . . . . . . . 16  |-  f  e. 
_V
7574rnex 4958 . . . . . . . . . . . . . . 15  |-  ran  f  e.  _V
76 exse 4373 . . . . . . . . . . . . . . 15  |-  ( ran  f  e.  _V  ->  ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) Se  ran  f )
7775, 76ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) Se  ran  f
78 eqid 2296 . . . . . . . . . . . . . . 15  |- OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f )  = OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f )
7978oieu 7270 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  )  We  ran  f  /\  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) Se  ran  f )  ->  (
( Ord  y  /\  f  Isom  _E  ,  (  ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ( y ,  ran  f ) )  <-> 
( y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
)  /\  f  = OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
) ) ) )
8069, 77, 79sylancl 643 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( Ord  y  /\  f  Isom  _E  ,  (  ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ( y ,  ran  f
) )  <->  ( y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f )  /\  f  = OrdIso (
( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
) ) ) )
8170, 73, 80mpbi2and 887 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f )  /\  f  = OrdIso (
( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
) ) )
8281simpld 445 . . . . . . . . . . 11  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
) )
8375, 75xpex 4817 . . . . . . . . . . . . 13  |-  ( ran  f  X.  ran  f
)  e.  _V
8483inex2 4172 . . . . . . . . . . . 12  |-  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  e.  _V
85 sseq1 3212 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( r  C_  ( ran  f  X.  ran  f )  <->  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) ) )
8636, 85mpbiri 224 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  r  C_  ( ran  f  X.  ran  f
) )
87 dmss 4894 . . . . . . . . . . . . . . . . . . 19  |-  ( r 
C_  ( ran  f  X.  ran  f )  ->  dom  r  C_  dom  ( ran  f  X.  ran  f
) )
8886, 87syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom  r  C_  dom  ( ran  f  X. 
ran  f ) )
89 dmxpid 4914 . . . . . . . . . . . . . . . . . 18  |-  dom  ( ran  f  X.  ran  f
)  =  ran  f
9088, 89syl6sseq 3237 . . . . . . . . . . . . . . . . 17  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom  r  C_  ran  f )
91 dmresi 5021 . . . . . . . . . . . . . . . . . 18  |-  dom  (  _I  |`  ran  f )  =  ran  f
92 sseq2 3213 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( (  _I  |`  ran  f )  C_  r 
<->  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) ) )
9334, 92mpbiri 224 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  (  _I  |`  ran  f
)  C_  r )
94 dmss 4894 . . . . . . . . . . . . . . . . . . 19  |-  ( (  _I  |`  ran  f ) 
C_  r  ->  dom  (  _I  |`  ran  f
)  C_  dom  r )
9593, 94syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom  (  _I  |` 
ran  f )  C_  dom  r )
9691, 95syl5eqssr 3236 . . . . . . . . . . . . . . . . 17  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ran  f  C_  dom  r )
9790, 96eqssd 3209 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom  r  =  ran  f )
9897sseq1d 3218 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( dom  r  C_  A  <->  ran  f  C_  A
) )
9997reseq2d 4971 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  (  _I  |`  dom  r
)  =  (  _I  |`  ran  f ) )
100 id 19 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f ) ) )
10199, 100sseq12d 3220 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( (  _I  |`  dom  r )  C_  r 
<->  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) ) )
10297, 97xpeq12d 4730 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( dom  r  X.  dom  r )  =  ( ran  f  X. 
ran  f ) )
103100, 102sseq12d 3220 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( r  C_  ( dom  r  X.  dom  r )  <->  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) ) )
10498, 101, 1033anbi123d 1252 . . . . . . . . . . . . . 14  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  <-> 
( ran  f  C_  A  /\  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  /\  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) ) ) )
105 difeq1 3300 . . . . . . . . . . . . . . . . 17  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( r  \  _I  )  =  (
( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) )
106 difun2 3546 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  u.  _I  )  \  _I  )  =  ( R  \  _I  )
107106ineq1i 3379 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  u.  _I  )  \  _I  )  i^i  ( ran  f  X. 
ran  f ) )  =  ( ( R 
\  _I  )  i^i  ( ran  f  X. 
ran  f ) )
108 indif1 3426 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  u.  _I  )  \  _I  )  i^i  ( ran  f  X. 
ran  f ) )  =  ( ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
\  _I  )
109 indif1 3426 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  \  _I  )  i^i  ( ran  f  X. 
ran  f ) )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )
110107, 108, 1093eqtr3i 2324 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  )
111105, 110syl6eq 2344 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( r  \  _I  )  =  (
( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) )
112 weeq1 4397 . . . . . . . . . . . . . . . 16  |-  ( ( r  \  _I  )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  -> 
( ( r  \  _I  )  We  dom  r 
<->  ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  )  We  dom  r ) )
113111, 112syl 15 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( r 
\  _I  )  We 
dom  r  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
dom  r ) )
114 weeq2 4398 . . . . . . . . . . . . . . . 16  |-  ( dom  r  =  ran  f  ->  ( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
dom  r  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
11597, 114syl 15 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  )  We  dom  r  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
116113, 115bitrd 244 . . . . . . . . . . . . . 14  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( r 
\  _I  )  We 
dom  r  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
117104, 116anbi12d 691 . . . . . . . . . . . . 13  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  <->  ( ( ran  f  C_  A  /\  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  /\  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) )  /\  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) ) )
118 oieq1 7243 . . . . . . . . . . . . . . . . 17  |-  ( ( r  \  _I  )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  -> OrdIso ( ( r  \  _I  ) ,  dom  r
)  = OrdIso ( (
( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  dom  r ) )
119111, 118syl 15 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  -> OrdIso ( ( r  \  _I  ) ,  dom  r
)  = OrdIso ( (
( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  dom  r ) )
120 oieq2 7244 . . . . . . . . . . . . . . . . 17  |-  ( dom  r  =  ran  f  -> OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  dom  r )  = OrdIso
( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  ran  f ) )
12197, 120syl 15 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  -> OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  dom  r )  = OrdIso
( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  ran  f ) )
122119, 121eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  -> OrdIso ( ( r  \  _I  ) ,  dom  r
)  = OrdIso ( (
( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f ) )
123122dmeqd 4897 . . . . . . . . . . . . . 14  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom OrdIso ( (
r  \  _I  ) ,  dom  r )  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f ) )
124123eqeq2d 2307 . . . . . . . . . . . . 13  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r )  <->  y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  ran  f ) ) )
125117, 124anbi12d 691 . . . . . . . . . . . 12  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) )  <-> 
( ( ( ran  f  C_  A  /\  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  /\  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) )  /\  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f )  /\  y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f ) ) ) )
12684, 125spcev 2888 . . . . . . . . . . 11  |-  ( ( ( ( ran  f  C_  A  /\  (  _I  |`  ran  f )  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f
) )  /\  (
( R  u.  _I  )  i^i  ( ran  f  X.  ran  f ) ) 
C_  ( ran  f  X.  ran  f ) )  /\  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f )  /\  y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f ) )  ->  E. r
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )
12738, 69, 82, 126syl21anc 1181 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )
128127ex 423 . . . . . . . . 9  |-  ( y  e.  On  ->  (
f : y -1-1-> A  ->  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) ) )
129128exlimdv 1626 . . . . . . . 8  |-  ( y  e.  On  ->  ( E. f  f :
y -1-1-> A  ->  E. r
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) ) )
130129imp 418 . . . . . . 7  |-  ( ( y  e.  On  /\  E. f  f : y
-1-1-> A )  ->  E. r
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )
13122, 130sylan2 460 . . . . . 6  |-  ( ( y  e.  On  /\  y  ~<_  A )  ->  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )
132 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )
13310dmex 4957 . . . . . . . . . . . 12  |-  dom  r  e.  _V
134 eqid 2296 . . . . . . . . . . . . 13  |- OrdIso ( ( r  \  _I  ) ,  dom  r )  = OrdIso
( ( r  \  _I  ) ,  dom  r
)
135134oion 7267 . . . . . . . . . . . 12  |-  ( dom  r  e.  _V  ->  dom OrdIso ( ( r  \  _I  ) ,  dom  r
)  e.  On )
136133, 135ax-mp 8 . . . . . . . . . . 11  |-  dom OrdIso ( ( r  \  _I  ) ,  dom  r )  e.  On
137132, 136syl6eqel 2384 . . . . . . . . . 10  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  y  e.  On )
138137adantl 452 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  y  e.  On )
139 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  ( r  \  _I  )  We  dom  r )
140134oien 7269 . . . . . . . . . . . . 13  |-  ( ( dom  r  e.  _V  /\  ( r  \  _I  )  We  dom  r )  ->  dom OrdIso ( (
r  \  _I  ) ,  dom  r )  ~~  dom  r )
141133, 139, 140sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  dom OrdIso ( (
r  \  _I  ) ,  dom  r )  ~~  dom  r )
142132, 141eqbrtrd 4059 . . . . . . . . . . 11  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  y  ~~  dom  r )
143142adantl 452 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  y  ~~  dom  r )
144 simpll1 994 . . . . . . . . . . 11  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  dom  r  C_  A )
145 ssdomg 6923 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( dom  r  C_  A  ->  dom  r  ~<_  A )
)
146145imp 418 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  dom  r  C_  A )  ->  dom  r  ~<_  A )
147144, 146sylan2 460 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  dom  r  ~<_  A )
148 endomtr 6935 . . . . . . . . . 10  |-  ( ( y  ~~  dom  r  /\  dom  r  ~<_  A )  ->  y  ~<_  A )
149143, 147, 148syl2anc 642 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  y  ~<_  A )
150138, 149jca 518 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  ( y  e.  On  /\  y  ~<_  A ) )
151150ex 423 . . . . . . 7  |-  ( A  e.  V  ->  (
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) )  ->  ( y  e.  On  /\  y  ~<_  A ) ) )
152151exlimdv 1626 . . . . . 6  |-  ( A  e.  V  ->  ( E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) )  ->  ( y  e.  On  /\  y  ~<_  A ) ) )
153131, 152impbid2 195 . . . . 5  |-  ( A  e.  V  ->  (
( y  e.  On  /\  y  ~<_  A )  <->  E. r
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) ) )
15421, 153syl5bb 248 . . . 4  |-  ( A  e.  V  ->  (
y  e.  { x  e.  On  |  x  ~<_  A }  <->  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) ) )
155154abbi2dv 2411 . . 3  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  =  { y  |  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) } )
1561rneqi 4921 . . . 4  |-  ran  F  =  ran  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
157 rnopab 4940 . . . 4  |-  ran  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  =  { y  |  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
158156, 157eqtri 2316 . . 3  |-  ran  F  =  { y  |  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
159155, 158syl6reqr 2347 . 2  |-  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } )
16016, 19, 1593pm3.2i 1130 1  |-  ( dom 
F  C_  ~P ( A  X.  A )  /\  Fun  F  /\  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557   {crab 2560   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   class class class wbr 4039   {copab 4092    _E cep 4319    _I cid 4320    Or wor 4329   Se wse 4366    We wwe 4367   Ord word 4407   Oncon0 4408    X. cxp 4703   dom cdm 4705   ran crn 4706    |` cres 4707   Fun wfun 5265   -->wf 5267   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271    Isom wiso 5272    ~~ cen 6876    ~<_ cdom 6877  OrdIsocoi 7240
This theorem is referenced by:  hartogslem2  7274  harwdom  7320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 6320  df-recs 6404  df-en 6880  df-dom 6881  df-oi 7241
  Copyright terms: Public domain W3C validator