MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogslem2 Unicode version

Theorem hartogslem2 7258
Description: Lemma for hartogs 7259. (Contributed by Mario Carneiro, 14-Jan-2013.)
Hypotheses
Ref Expression
hartogslem.2  |-  F  =  { <. r ,  y
>.  |  ( (
( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
hartogslem.3  |-  R  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( f `
 w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }
Assertion
Ref Expression
hartogslem2  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
Distinct variable groups:    f, s,
t, w, y, z   
f, r, x, A, y    R, r, x    V, r, y
Allowed substitution hints:    A( z, w, t, s)    R( y, z, w, t, f, s)    F( x, y, z, w, t, f, s, r)    V( x, z, w, t, f, s)

Proof of Theorem hartogslem2
StepHypRef Expression
1 hartogslem.2 . . . 4  |-  F  =  { <. r ,  y
>.  |  ( (
( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
2 hartogslem.3 . . . 4  |-  R  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( f `
 w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }
31, 2hartogslem1 7257 . . 3  |-  ( dom 
F  C_  ~P ( A  X.  A )  /\  Fun  F  /\  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } ) )
43simp3i 966 . 2  |-  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } )
53simp2i 965 . . . 4  |-  Fun  F
63simp1i 964 . . . . 5  |-  dom  F  C_ 
~P ( A  X.  A )
7 xpexg 4800 . . . . . . 7  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
87anidms 626 . . . . . 6  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
9 pwexg 4194 . . . . . 6  |-  ( ( A  X.  A )  e.  _V  ->  ~P ( A  X.  A
)  e.  _V )
108, 9syl 15 . . . . 5  |-  ( A  e.  V  ->  ~P ( A  X.  A
)  e.  _V )
11 ssexg 4160 . . . . 5  |-  ( ( dom  F  C_  ~P ( A  X.  A
)  /\  ~P ( A  X.  A )  e. 
_V )  ->  dom  F  e.  _V )
126, 10, 11sylancr 644 . . . 4  |-  ( A  e.  V  ->  dom  F  e.  _V )
13 funex 5743 . . . 4  |-  ( ( Fun  F  /\  dom  F  e.  _V )  ->  F  e.  _V )
145, 12, 13sylancr 644 . . 3  |-  ( A  e.  V  ->  F  e.  _V )
15 rnexg 4940 . . 3  |-  ( F  e.  _V  ->  ran  F  e.  _V )
1614, 15syl 15 . 2  |-  ( A  e.  V  ->  ran  F  e.  _V )
174, 16eqeltrrd 2358 1  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    C_ wss 3152   ~Pcpw 3625   class class class wbr 4023   {copab 4076    _E cep 4303    _I cid 4304    We wwe 4351   Oncon0 4392    X. cxp 4687   dom cdm 4689   ran crn 4690    |` cres 4691   Fun wfun 5249   ` cfv 5255    ~<_ cdom 6861  OrdIsocoi 7224
This theorem is referenced by:  hartogs  7259
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-en 6864  df-dom 6865  df-oi 7225
  Copyright terms: Public domain W3C validator