MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcss Unicode version

Theorem hashbcss 13067
Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
Assertion
Ref Expression
hashbcss  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  ( B C N )  C_  ( A C N ) )
Distinct variable groups:    a, b,
i    A, a, i    B, a, i    N, a, i
Allowed substitution hints:    A( b)    B( b)    C( i, a, b)    N( b)    V( i, a, b)

Proof of Theorem hashbcss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp2 956 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  B  C_  A )
2 sspwb 4239 . . . 4  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
31, 2sylib 188 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  ~P B  C_  ~P A )
4 rabss2 3269 . . 3  |-  ( ~P B  C_  ~P A  ->  { x  e.  ~P B  |  ( # `  x
)  =  N }  C_ 
{ x  e.  ~P A  |  ( # `  x
)  =  N }
)
53, 4syl 15 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  { x  e.  ~P B  |  (
# `  x )  =  N }  C_  { x  e.  ~P A  |  (
# `  x )  =  N } )
6 simp1 955 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  A  e.  V )
7 ssexg 4176 . . . 4  |-  ( ( B  C_  A  /\  A  e.  V )  ->  B  e.  _V )
81, 6, 7syl2anc 642 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  B  e.  _V )
9 simp3 957 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  N  e.  NN0 )
10 ramval.c . . . 4  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
1110hashbcval 13065 . . 3  |-  ( ( B  e.  _V  /\  N  e.  NN0 )  -> 
( B C N )  =  { x  e.  ~P B  |  (
# `  x )  =  N } )
128, 9, 11syl2anc 642 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  ( B C N )  =  { x  e.  ~P B  |  ( # `  x
)  =  N }
)
1310hashbcval 13065 . . 3  |-  ( ( A  e.  V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
14133adant2 974 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  ( A C N )  =  { x  e.  ~P A  |  ( # `  x
)  =  N }
)
155, 12, 143sstr4d 3234 1  |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  ( B C N )  C_  ( A C N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1632    e. wcel 1696   {crab 2560   _Vcvv 2801    C_ wss 3165   ~Pcpw 3638   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   NN0cn0 9981   #chash 11353
This theorem is referenced by:  ramval  13071  ramub2  13077  ramub1lem2  13090
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879
  Copyright terms: Public domain W3C validator