MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcval Unicode version

Theorem hashbcval 13049
Description: Value of the "binomial set", the set of all  N-element subsets of  A. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
Assertion
Ref Expression
hashbcval  |-  ( ( A  e.  V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
Distinct variable groups:    x, C    a, b, i, x    A, a, i, x    N, a, i, x    x, V
Allowed substitution hints:    A( b)    C( i, a, b)    N( b)    V( i, a, b)

Proof of Theorem hashbcval
StepHypRef Expression
1 elex 2796 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 pwexg 4194 . . . . 5  |-  ( A  e.  _V  ->  ~P A  e.  _V )
32adantr 451 . . . 4  |-  ( ( A  e.  _V  /\  N  e.  NN0 )  ->  ~P A  e.  _V )
4 rabexg 4164 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( # `  x
)  =  N }  e.  _V )
53, 4syl 15 . . 3  |-  ( ( A  e.  _V  /\  N  e.  NN0 )  ->  { x  e.  ~P A  |  ( # `  x
)  =  N }  e.  _V )
6 fveq2 5525 . . . . . . 7  |-  ( b  =  x  ->  ( # `
 b )  =  ( # `  x
) )
76eqeq1d 2291 . . . . . 6  |-  ( b  =  x  ->  (
( # `  b )  =  i  <->  ( # `  x
)  =  i ) )
87cbvrabv 2787 . . . . 5  |-  { b  e.  ~P a  |  ( # `  b
)  =  i }  =  { x  e. 
~P a  |  (
# `  x )  =  i }
9 simpl 443 . . . . . . 7  |-  ( ( a  =  A  /\  i  =  N )  ->  a  =  A )
109pweqd 3630 . . . . . 6  |-  ( ( a  =  A  /\  i  =  N )  ->  ~P a  =  ~P A )
11 simpr 447 . . . . . . 7  |-  ( ( a  =  A  /\  i  =  N )  ->  i  =  N )
1211eqeq2d 2294 . . . . . 6  |-  ( ( a  =  A  /\  i  =  N )  ->  ( ( # `  x
)  =  i  <->  ( # `  x
)  =  N ) )
1310, 12rabeqbidv 2783 . . . . 5  |-  ( ( a  =  A  /\  i  =  N )  ->  { x  e.  ~P a  |  ( # `  x
)  =  i }  =  { x  e. 
~P A  |  (
# `  x )  =  N } )
148, 13syl5eq 2327 . . . 4  |-  ( ( a  =  A  /\  i  =  N )  ->  { b  e.  ~P a  |  ( # `  b
)  =  i }  =  { x  e. 
~P A  |  (
# `  x )  =  N } )
15 ramval.c . . . 4  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
1614, 15ovmpt2ga 5977 . . 3  |-  ( ( A  e.  _V  /\  N  e.  NN0  /\  {
x  e.  ~P A  |  ( # `  x
)  =  N }  e.  _V )  ->  ( A C N )  =  { x  e.  ~P A  |  ( # `  x
)  =  N }
)
175, 16mpd3an3 1278 . 2  |-  ( ( A  e.  _V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
181, 17sylan 457 1  |-  ( ( A  e.  V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788   ~Pcpw 3625   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   NN0cn0 9965   #chash 11337
This theorem is referenced by:  hashbccl  13050  hashbcss  13051  hashbc0  13052  hashbc2  13053  ramval  13055  ram0  13069  ramub1lem1  13073  ramub1lem2  13074
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863
  Copyright terms: Public domain W3C validator