MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcval Unicode version

Theorem hashbcval 13065
Description: Value of the "binomial set", the set of all  N-element subsets of  A. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
Assertion
Ref Expression
hashbcval  |-  ( ( A  e.  V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
Distinct variable groups:    x, C    a, b, i, x    A, a, i, x    N, a, i, x    x, V
Allowed substitution hints:    A( b)    C( i, a, b)    N( b)    V( i, a, b)

Proof of Theorem hashbcval
StepHypRef Expression
1 elex 2809 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 pwexg 4210 . . . . 5  |-  ( A  e.  _V  ->  ~P A  e.  _V )
32adantr 451 . . . 4  |-  ( ( A  e.  _V  /\  N  e.  NN0 )  ->  ~P A  e.  _V )
4 rabexg 4180 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( # `  x
)  =  N }  e.  _V )
53, 4syl 15 . . 3  |-  ( ( A  e.  _V  /\  N  e.  NN0 )  ->  { x  e.  ~P A  |  ( # `  x
)  =  N }  e.  _V )
6 fveq2 5541 . . . . . . 7  |-  ( b  =  x  ->  ( # `
 b )  =  ( # `  x
) )
76eqeq1d 2304 . . . . . 6  |-  ( b  =  x  ->  (
( # `  b )  =  i  <->  ( # `  x
)  =  i ) )
87cbvrabv 2800 . . . . 5  |-  { b  e.  ~P a  |  ( # `  b
)  =  i }  =  { x  e. 
~P a  |  (
# `  x )  =  i }
9 simpl 443 . . . . . . 7  |-  ( ( a  =  A  /\  i  =  N )  ->  a  =  A )
109pweqd 3643 . . . . . 6  |-  ( ( a  =  A  /\  i  =  N )  ->  ~P a  =  ~P A )
11 simpr 447 . . . . . . 7  |-  ( ( a  =  A  /\  i  =  N )  ->  i  =  N )
1211eqeq2d 2307 . . . . . 6  |-  ( ( a  =  A  /\  i  =  N )  ->  ( ( # `  x
)  =  i  <->  ( # `  x
)  =  N ) )
1310, 12rabeqbidv 2796 . . . . 5  |-  ( ( a  =  A  /\  i  =  N )  ->  { x  e.  ~P a  |  ( # `  x
)  =  i }  =  { x  e. 
~P A  |  (
# `  x )  =  N } )
148, 13syl5eq 2340 . . . 4  |-  ( ( a  =  A  /\  i  =  N )  ->  { b  e.  ~P a  |  ( # `  b
)  =  i }  =  { x  e. 
~P A  |  (
# `  x )  =  N } )
15 ramval.c . . . 4  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
1614, 15ovmpt2ga 5993 . . 3  |-  ( ( A  e.  _V  /\  N  e.  NN0  /\  {
x  e.  ~P A  |  ( # `  x
)  =  N }  e.  _V )  ->  ( A C N )  =  { x  e.  ~P A  |  ( # `  x
)  =  N }
)
175, 16mpd3an3 1278 . 2  |-  ( ( A  e.  _V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
181, 17sylan 457 1  |-  ( ( A  e.  V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {crab 2560   _Vcvv 2801   ~Pcpw 3638   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   NN0cn0 9981   #chash 11353
This theorem is referenced by:  hashbccl  13066  hashbcss  13067  hashbc0  13068  hashbc2  13069  ramval  13071  ram0  13085  ramub1lem1  13089  ramub1lem2  13090
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879
  Copyright terms: Public domain W3C validator