MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdom Unicode version

Theorem hashdom 11377
Description: Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashdom  |-  ( ( A  e.  Fin  /\  B  e.  V )  ->  ( ( # `  A
)  <_  ( # `  B
)  <->  A  ~<_  B )
)

Proof of Theorem hashdom
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 11050 . . . . . . . 8  |-  ( 1 ... ( ( # `  B )  -  ( # `
 A ) ) )  e.  Fin
2 ficardom 7610 . . . . . . . 8  |-  ( ( 1 ... ( (
# `  B )  -  ( # `  A
) ) )  e. 
Fin  ->  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  e.  om )
31, 2ax-mp 8 . . . . . . 7  |-  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) )  e.  om
4 eqid 2296 . . . . . . . . . . . . . 14  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  =  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )
54hashgval 11356 . . . . . . . . . . . . 13  |-  ( A  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  =  ( # `  A
) )
65ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  =  ( # `  A
) )
74hashgval 11356 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( (
# `  B )  -  ( # `  A
) ) )  e. 
Fin  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) )  =  ( # `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) )
81, 7ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) )  =  ( # `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) )
9 hashcl 11366 . . . . . . . . . . . . . . . 16  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
109ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( # `
 A )  e. 
NN0 )
11 hashcl 11366 . . . . . . . . . . . . . . . 16  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
1211ad2antlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( # `
 B )  e. 
NN0 )
13 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( # `
 A )  <_ 
( # `  B ) )
14 nn0sub2 10093 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0  /\  ( # `
 A )  <_ 
( # `  B ) )  ->  ( ( # `
 B )  -  ( # `  A ) )  e.  NN0 )
1510, 12, 13, 14syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( # `  B )  -  ( # `  A
) )  e.  NN0 )
16 hashfz1 11361 . . . . . . . . . . . . . 14  |-  ( ( ( # `  B
)  -  ( # `  A ) )  e. 
NN0  ->  ( # `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  =  ( ( # `  B
)  -  ( # `  A ) ) )
1715, 16syl 15 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( # `
 ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) )  =  ( (
# `  B )  -  ( # `  A
) ) )
188, 17syl5eq 2340 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) )  =  ( ( # `  B
)  -  ( # `  A ) ) )
196, 18oveq12d 5892 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) ) )  =  ( ( # `  A
)  +  ( (
# `  B )  -  ( # `  A
) ) ) )
209nn0cnd 10036 . . . . . . . . . . . . 13  |-  ( A  e.  Fin  ->  ( # `
 A )  e.  CC )
2111nn0cnd 10036 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( # `
 B )  e.  CC )
22 pncan3 9075 . . . . . . . . . . . . 13  |-  ( ( ( # `  A
)  e.  CC  /\  ( # `  B )  e.  CC )  -> 
( ( # `  A
)  +  ( (
# `  B )  -  ( # `  A
) ) )  =  ( # `  B
) )
2320, 21, 22syl2an 463 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( # `  A
)  +  ( (
# `  B )  -  ( # `  A
) ) )  =  ( # `  B
) )
2423adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( # `  A )  +  ( ( # `  B )  -  ( # `
 A ) ) )  =  ( # `  B ) )
2519, 24eqtrd 2328 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) ) )  =  ( # `  B
) )
26 ficardom 7610 . . . . . . . . . . . 12  |-  ( A  e.  Fin  ->  ( card `  A )  e. 
om )
2726ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( card `  A )  e. 
om )
284hashgadd 11375 . . . . . . . . . . 11  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) )  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) )  =  ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) ) ) )
2927, 3, 28sylancl 643 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  (
( card `  A )  +o  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) ) )  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  +  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) ) ) )
304hashgval 11356 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) )  =  ( # `  B
) )
3130ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) )  =  ( # `  B
) )
3225, 29, 313eqtr4d 2338 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  (
( card `  A )  +o  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) ) )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  B
) ) )
3332fveq2d 5545 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) ) )  =  ( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) ) ) )
344hashgf1o 11049 . . . . . . . . 9  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) : om -1-1-onto-> NN0
35 nnacl 6625 . . . . . . . . . 10  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) )  e.  om )  ->  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) )  e.  om )
3627, 3, 35sylancl 643 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( card `  A )  +o  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) )  e. 
om )
37 f1ocnvfv1 5808 . . . . . . . . 9  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) : om -1-1-onto-> NN0  /\  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) )  e.  om )  ->  ( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) ) )  =  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) )
3834, 36, 37sylancr 644 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) ) )  =  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) )
39 ficardom 7610 . . . . . . . . . 10  |-  ( B  e.  Fin  ->  ( card `  B )  e. 
om )
4039ad2antlr 707 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( card `  B )  e. 
om )
41 f1ocnvfv1 5808 . . . . . . . . 9  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) : om -1-1-onto-> NN0  /\  ( card `  B
)  e.  om )  ->  ( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) ) )  =  ( card `  B
) )
4234, 40, 41sylancr 644 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) ) )  =  ( card `  B
) )
4333, 38, 423eqtr3d 2336 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( card `  A )  +o  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) )  =  ( card `  B
) )
44 oveq2 5882 . . . . . . . . 9  |-  ( y  =  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  ->  (
( card `  A )  +o  y )  =  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) )
4544eqeq1d 2304 . . . . . . . 8  |-  ( y  =  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  ->  (
( ( card `  A
)  +o  y )  =  ( card `  B
)  <->  ( ( card `  A )  +o  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) )  =  (
card `  B )
) )
4645rspcev 2897 . . . . . . 7  |-  ( ( ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  e.  om  /\  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) )  =  ( card `  B ) )  ->  E. y  e.  om  ( ( card `  A
)  +o  y )  =  ( card `  B
) )
473, 43, 46sylancr 644 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  E. y  e.  om  ( ( card `  A )  +o  y
)  =  ( card `  B ) )
4847ex 423 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( # `  A
)  <_  ( # `  B
)  ->  E. y  e.  om  ( ( card `  A )  +o  y
)  =  ( card `  B ) ) )
49 cardnn 7612 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( card `  y )  =  y )
5049adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( card `  y
)  =  y )
5150oveq2d 5890 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( card `  A )  +o  ( card `  y ) )  =  ( ( card `  A )  +o  y
) )
5251eqeq1d 2304 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( (
card `  A )  +o  ( card `  y
) )  =  (
card `  B )  <->  ( ( card `  A
)  +o  y )  =  ( card `  B
) ) )
53 fveq2 5541 . . . . . . . 8  |-  ( ( ( card `  A
)  +o  ( card `  y ) )  =  ( card `  B
)  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  y ) ) )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  B
) ) )
54 nnfi 7069 . . . . . . . . 9  |-  ( y  e.  om  ->  y  e.  Fin )
55 ficardom 7610 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  ->  ( card `  y )  e. 
om )
564hashgadd 11375 . . . . . . . . . . . . . 14  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  y )  e.  om )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  (
( card `  A )  +o  ( card `  y
) ) )  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  y ) ) ) )
5726, 55, 56syl2an 463 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  y ) ) )  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  +  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  y
) ) ) )
584hashgval 11356 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  y ) )  =  ( # `  y
) )
595, 58oveqan12d 5893 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  y ) ) )  =  ( (
# `  A )  +  ( # `  y
) ) )
6057, 59eqtrd 2328 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  y ) ) )  =  ( ( # `  A )  +  (
# `  y )
) )
6160adantlr 695 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  y ) ) )  =  ( ( # `  A )  +  (
# `  y )
) )
6230ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  B
) )  =  (
# `  B )
)
6361, 62eqeq12d 2310 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( (
card `  A )  +o  ( card `  y
) ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) )  <->  ( ( # `
 A )  +  ( # `  y
) )  =  (
# `  B )
) )
64 hashcl 11366 . . . . . . . . . . . . . . 15  |-  ( y  e.  Fin  ->  ( # `
 y )  e. 
NN0 )
6564nn0ge0d 10037 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  ->  0  <_  ( # `  y
) )
6665adantl 452 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  0  <_  ( # `  y
) )
679nn0red 10035 . . . . . . . . . . . . . 14  |-  ( A  e.  Fin  ->  ( # `
 A )  e.  RR )
6864nn0red 10035 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  ->  ( # `
 y )  e.  RR )
69 addge01 9300 . . . . . . . . . . . . . 14  |-  ( ( ( # `  A
)  e.  RR  /\  ( # `  y )  e.  RR )  -> 
( 0  <_  ( # `
 y )  <->  ( # `  A
)  <_  ( ( # `
 A )  +  ( # `  y
) ) ) )
7067, 68, 69syl2an 463 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( 0  <_  ( # `
 y )  <->  ( # `  A
)  <_  ( ( # `
 A )  +  ( # `  y
) ) ) )
7166, 70mpbid 201 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( # `  A
)  <_  ( ( # `
 A )  +  ( # `  y
) ) )
7271adantlr 695 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( # `  A
)  <_  ( ( # `
 A )  +  ( # `  y
) ) )
73 breq2 4043 . . . . . . . . . . 11  |-  ( ( ( # `  A
)  +  ( # `  y ) )  =  ( # `  B
)  ->  ( ( # `
 A )  <_ 
( ( # `  A
)  +  ( # `  y ) )  <->  ( # `  A
)  <_  ( # `  B
) ) )
7472, 73syl5ibcom 211 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( (
# `  A )  +  ( # `  y
) )  =  (
# `  B )  ->  ( # `  A
)  <_  ( # `  B
) ) )
7563, 74sylbid 206 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( (
card `  A )  +o  ( card `  y
) ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) )  ->  ( # `
 A )  <_ 
( # `  B ) ) )
7654, 75sylan2 460 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( (
card `  A )  +o  ( card `  y
) ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) )  ->  ( # `
 A )  <_ 
( # `  B ) ) )
7753, 76syl5 28 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( (
card `  A )  +o  ( card `  y
) )  =  (
card `  B )  ->  ( # `  A
)  <_  ( # `  B
) ) )
7852, 77sylbird 226 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( (
card `  A )  +o  y )  =  (
card `  B )  ->  ( # `  A
)  <_  ( # `  B
) ) )
7978rexlimdva 2680 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( E. y  e. 
om  ( ( card `  A )  +o  y
)  =  ( card `  B )  ->  ( # `
 A )  <_ 
( # `  B ) ) )
8048, 79impbid 183 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( # `  A
)  <_  ( # `  B
)  <->  E. y  e.  om  ( ( card `  A
)  +o  y )  =  ( card `  B
) ) )
81 nnawordex 6651 . . . . 5  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  B )  e.  om )  ->  (
( card `  A )  C_  ( card `  B
)  <->  E. y  e.  om  ( ( card `  A
)  +o  y )  =  ( card `  B
) ) )
8226, 39, 81syl2an 463 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( card `  A
)  C_  ( card `  B )  <->  E. y  e.  om  ( ( card `  A )  +o  y
)  =  ( card `  B ) ) )
83 finnum 7597 . . . . 5  |-  ( A  e.  Fin  ->  A  e.  dom  card )
84 finnum 7597 . . . . 5  |-  ( B  e.  Fin  ->  B  e.  dom  card )
85 carddom2 7626 . . . . 5  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  B )  <->  A  ~<_  B ) )
8683, 84, 85syl2an 463 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( card `  A
)  C_  ( card `  B )  <->  A  ~<_  B ) )
8780, 82, 863bitr2d 272 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( # `  A
)  <_  ( # `  B
)  <->  A  ~<_  B )
)
8887adantlr 695 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  B  e.  Fin )  ->  ( ( # `  A )  <_  ( # `
 B )  <->  A  ~<_  B ) )
89 hashxrcl 11367 . . . . . 6  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
RR* )
9089ad2antrr 706 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( # `
 A )  e. 
RR* )
91 pnfge 10485 . . . . 5  |-  ( (
# `  A )  e.  RR*  ->  ( # `  A
)  <_  +oo )
9290, 91syl 15 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( # `
 A )  <_  +oo )
93 hashinf 11358 . . . . 5  |-  ( ( B  e.  V  /\  -.  B  e.  Fin )  ->  ( # `  B
)  =  +oo )
9493adantll 694 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( # `
 B )  = 
+oo )
9592, 94breqtrrd 4065 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( # `
 A )  <_ 
( # `  B ) )
96 isinffi 7641 . . . . . 6  |-  ( ( -.  B  e.  Fin  /\  A  e.  Fin )  ->  E. f  f : A -1-1-> B )
9796ancoms 439 . . . . 5  |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  E. f  f : A -1-1-> B )
9897adantlr 695 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  E. f 
f : A -1-1-> B
)
99 brdomg 6888 . . . . 5  |-  ( B  e.  V  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
10099ad2antlr 707 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
10198, 100mpbird 223 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  A  ~<_  B )
10295, 1012thd 231 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  (
( # `  A )  <_  ( # `  B
)  <->  A  ~<_  B )
)
10388, 102pm2.61dan 766 1  |-  ( ( A  e.  Fin  /\  B  e.  V )  ->  ( ( # `  A
)  <_  ( # `  B
)  <->  A  ~<_  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   omcom 4672   `'ccnv 4704   dom cdm 4705    |` cres 4707   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   reccrdg 6438    +o coa 6492    ~<_ cdom 6877   Fincfn 6879   cardccrd 7584   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    +oocpnf 8880   RR*cxr 8882    <_ cle 8884    - cmin 9053   NN0cn0 9981   ...cfz 10798   #chash 11353
This theorem is referenced by:  hashdomi  11378  hashsdom  11379  hashun2  11381  hashsslei  11394  hashfun  11405  hashf1  11411  isercoll  12157  phicl2  12852  phibnd  12855  prmreclem2  12980  prmreclem3  12981  4sqlem11  13018  vdwlem11  13054  ramub2  13077  0ram  13083  ram0  13085  sylow1lem4  14928  pgpssslw  14941  fislw  14952  znfld  16530  znidomb  16531  fta1blem  19570  birthdaylem3  20264  basellem4  20337  ppiwordi  20416  musum  20447  ppiub  20459  chpub  20475  lgsqrlem4  20599  derangenlem  23717  subfaclefac  23722  erdsze2lem1  23749  umgraex  23890  konigsberg  23926  snmlff  23927  idomsubgmo  27617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-hash 11354
  Copyright terms: Public domain W3C validator