MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdomi Structured version   Unicode version

Theorem hashdomi 11654
Description: Non-strict order relation of the  # function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashdomi  |-  ( A  ~<_  B  ->  ( # `  A
)  <_  ( # `  B
) )

Proof of Theorem hashdomi
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( A  ~<_  B  /\  A  e.  Fin )  ->  A  ~<_  B )
2 simpr 448 . . . 4  |-  ( ( A  ~<_  B  /\  A  e.  Fin )  ->  A  e.  Fin )
3 reldom 7115 . . . . . 6  |-  Rel  ~<_
43brrelex2i 4919 . . . . 5  |-  ( A  ~<_  B  ->  B  e.  _V )
54adantr 452 . . . 4  |-  ( ( A  ~<_  B  /\  A  e.  Fin )  ->  B  e.  _V )
6 hashdom 11653 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  _V )  ->  ( ( # `  A
)  <_  ( # `  B
)  <->  A  ~<_  B )
)
72, 5, 6syl2anc 643 . . 3  |-  ( ( A  ~<_  B  /\  A  e.  Fin )  ->  (
( # `  A )  <_  ( # `  B
)  <->  A  ~<_  B )
)
81, 7mpbird 224 . 2  |-  ( ( A  ~<_  B  /\  A  e.  Fin )  ->  ( # `
 A )  <_ 
( # `  B ) )
9 pnfxr 10713 . . . 4  |-  +oo  e.  RR*
10 pnfge 10727 . . . 4  |-  (  +oo  e.  RR*  ->  +oo  <_  +oo )
119, 10mp1i 12 . . 3  |-  ( ( A  ~<_  B  /\  -.  A  e.  Fin )  ->  +oo  <_  +oo )
123brrelexi 4918 . . . 4  |-  ( A  ~<_  B  ->  A  e.  _V )
13 hashinf 11623 . . . 4  |-  ( ( A  e.  _V  /\  -.  A  e.  Fin )  ->  ( # `  A
)  =  +oo )
1412, 13sylan 458 . . 3  |-  ( ( A  ~<_  B  /\  -.  A  e.  Fin )  ->  ( # `  A
)  =  +oo )
154adantr 452 . . . 4  |-  ( ( A  ~<_  B  /\  -.  A  e.  Fin )  ->  B  e.  _V )
16 domfi 7330 . . . . . 6  |-  ( ( B  e.  Fin  /\  A  ~<_  B )  ->  A  e.  Fin )
1716expcom 425 . . . . 5  |-  ( A  ~<_  B  ->  ( B  e.  Fin  ->  A  e.  Fin ) )
1817con3and 429 . . . 4  |-  ( ( A  ~<_  B  /\  -.  A  e.  Fin )  ->  -.  B  e.  Fin )
19 hashinf 11623 . . . 4  |-  ( ( B  e.  _V  /\  -.  B  e.  Fin )  ->  ( # `  B
)  =  +oo )
2015, 18, 19syl2anc 643 . . 3  |-  ( ( A  ~<_  B  /\  -.  A  e.  Fin )  ->  ( # `  B
)  =  +oo )
2111, 14, 203brtr4d 4242 . 2  |-  ( ( A  ~<_  B  /\  -.  A  e.  Fin )  ->  ( # `  A
)  <_  ( # `  B
) )
228, 21pm2.61dan 767 1  |-  ( A  ~<_  B  ->  ( # `  A
)  <_  ( # `  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2956   class class class wbr 4212   ` cfv 5454    ~<_ cdom 7107   Fincfn 7109    +oocpnf 9117   RR*cxr 9119    <_ cle 9121   #chash 11618
This theorem is referenced by:  hashge0  11661  o1fsum  12592  incexc2  12618  dchrisum0re  21207  usgraedgleord  21413  esumcst  24455  idomodle  27489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-hash 11619
  Copyright terms: Public domain W3C validator