MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfacen Structured version   Unicode version

Theorem hashfacen 11705
Description: The number of bijections between two sets is a cardinal invariant. (Contributed by Mario Carneiro, 21-Jan-2015.)
Assertion
Ref Expression
hashfacen  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  {
f  |  f : B -1-1-onto-> D } )
Distinct variable groups:    A, f    B, f    C, f    D, f

Proof of Theorem hashfacen
Dummy variables  g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 7119 . 2  |-  ( A 
~~  B  <->  E. g 
g : A -1-1-onto-> B )
2 bren 7119 . 2  |-  ( C 
~~  D  <->  E. h  h : C -1-1-onto-> D )
3 eeanv 1938 . . 3  |-  ( E. g E. h ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  <->  ( E. g  g : A -1-1-onto-> B  /\  E. h  h : C -1-1-onto-> D ) )
4 f1of 5676 . . . . . . . 8  |-  ( f : A -1-1-onto-> C  ->  f : A
--> C )
5 f1odm 5680 . . . . . . . . . 10  |-  ( h : C -1-1-onto-> D  ->  dom  h  =  C )
6 vex 2961 . . . . . . . . . . 11  |-  h  e. 
_V
76dmex 5134 . . . . . . . . . 10  |-  dom  h  e.  _V
85, 7syl6eqelr 2527 . . . . . . . . 9  |-  ( h : C -1-1-onto-> D  ->  C  e.  _V )
9 f1odm 5680 . . . . . . . . . 10  |-  ( g : A -1-1-onto-> B  ->  dom  g  =  A )
10 vex 2961 . . . . . . . . . . 11  |-  g  e. 
_V
1110dmex 5134 . . . . . . . . . 10  |-  dom  g  e.  _V
129, 11syl6eqelr 2527 . . . . . . . . 9  |-  ( g : A -1-1-onto-> B  ->  A  e.  _V )
13 elmapg 7033 . . . . . . . . 9  |-  ( ( C  e.  _V  /\  A  e.  _V )  ->  ( f  e.  ( C  ^m  A )  <-> 
f : A --> C ) )
148, 12, 13syl2anr 466 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
f  e.  ( C  ^m  A )  <->  f : A
--> C ) )
154, 14syl5ibr 214 . . . . . . 7  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
f : A -1-1-onto-> C  -> 
f  e.  ( C  ^m  A ) ) )
1615abssdv 3419 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  C_  ( C  ^m  A ) )
17 ovex 6108 . . . . . . 7  |-  ( C  ^m  A )  e. 
_V
1817ssex 4349 . . . . . 6  |-  ( { f  |  f : A -1-1-onto-> C }  C_  ( C  ^m  A )  ->  { f  |  f : A -1-1-onto-> C }  e.  _V )
1916, 18syl 16 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  e.  _V )
20 f1of 5676 . . . . . . . 8  |-  ( f : B -1-1-onto-> D  ->  f : B
--> D )
21 f1ofo 5683 . . . . . . . . . . 11  |-  ( h : C -1-1-onto-> D  ->  h : C -onto-> D )
22 forn 5658 . . . . . . . . . . 11  |-  ( h : C -onto-> D  ->  ran  h  =  D )
2321, 22syl 16 . . . . . . . . . 10  |-  ( h : C -1-1-onto-> D  ->  ran  h  =  D )
246rnex 5135 . . . . . . . . . 10  |-  ran  h  e.  _V
2523, 24syl6eqelr 2527 . . . . . . . . 9  |-  ( h : C -1-1-onto-> D  ->  D  e.  _V )
26 f1ofo 5683 . . . . . . . . . . 11  |-  ( g : A -1-1-onto-> B  ->  g : A -onto-> B )
27 forn 5658 . . . . . . . . . . 11  |-  ( g : A -onto-> B  ->  ran  g  =  B
)
2826, 27syl 16 . . . . . . . . . 10  |-  ( g : A -1-1-onto-> B  ->  ran  g  =  B )
2910rnex 5135 . . . . . . . . . 10  |-  ran  g  e.  _V
3028, 29syl6eqelr 2527 . . . . . . . . 9  |-  ( g : A -1-1-onto-> B  ->  B  e.  _V )
31 elmapg 7033 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  B  e.  _V )  ->  ( f  e.  ( D  ^m  B )  <-> 
f : B --> D ) )
3225, 30, 31syl2anr 466 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
f  e.  ( D  ^m  B )  <->  f : B
--> D ) )
3320, 32syl5ibr 214 . . . . . . 7  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
f : B -1-1-onto-> D  -> 
f  e.  ( D  ^m  B ) ) )
3433abssdv 3419 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : B -1-1-onto-> D }  C_  ( D  ^m  B ) )
35 ovex 6108 . . . . . . 7  |-  ( D  ^m  B )  e. 
_V
3635ssex 4349 . . . . . 6  |-  ( { f  |  f : B -1-1-onto-> D }  C_  ( D  ^m  B )  ->  { f  |  f : B -1-1-onto-> D }  e.  _V )
3734, 36syl 16 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : B -1-1-onto-> D }  e.  _V )
38 f1oco 5700 . . . . . . . . 9  |-  ( ( h : C -1-1-onto-> D  /\  x : A -1-1-onto-> C )  ->  (
h  o.  x ) : A -1-1-onto-> D )
3938adantll 696 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  x : A -1-1-onto-> C
)  ->  ( h  o.  x ) : A -1-1-onto-> D
)
40 f1ocnv 5689 . . . . . . . . 9  |-  ( g : A -1-1-onto-> B  ->  `' g : B -1-1-onto-> A )
4140ad2antrr 708 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  x : A -1-1-onto-> C
)  ->  `' g : B -1-1-onto-> A )
42 f1oco 5700 . . . . . . . 8  |-  ( ( ( h  o.  x
) : A -1-1-onto-> D  /\  `' g : B -1-1-onto-> A
)  ->  ( (
h  o.  x )  o.  `' g ) : B -1-1-onto-> D )
4339, 41, 42syl2anc 644 . . . . . . 7  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  x : A -1-1-onto-> C
)  ->  ( (
h  o.  x )  o.  `' g ) : B -1-1-onto-> D )
4443ex 425 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
x : A -1-1-onto-> C  -> 
( ( h  o.  x )  o.  `' g ) : B -1-1-onto-> D
) )
45 vex 2961 . . . . . . 7  |-  x  e. 
_V
46 f1oeq1 5667 . . . . . . 7  |-  ( f  =  x  ->  (
f : A -1-1-onto-> C  <->  x : A
-1-1-onto-> C ) )
4745, 46elab 3084 . . . . . 6  |-  ( x  e.  { f  |  f : A -1-1-onto-> C }  <->  x : A -1-1-onto-> C )
486, 45coex 5415 . . . . . . . 8  |-  ( h  o.  x )  e. 
_V
4910cnvex 5408 . . . . . . . 8  |-  `' g  e.  _V
5048, 49coex 5415 . . . . . . 7  |-  ( ( h  o.  x )  o.  `' g )  e.  _V
51 f1oeq1 5667 . . . . . . 7  |-  ( f  =  ( ( h  o.  x )  o.  `' g )  -> 
( f : B -1-1-onto-> D  <->  ( ( h  o.  x
)  o.  `' g ) : B -1-1-onto-> D ) )
5250, 51elab 3084 . . . . . 6  |-  ( ( ( h  o.  x
)  o.  `' g )  e.  { f  |  f : B -1-1-onto-> D } 
<->  ( ( h  o.  x )  o.  `' g ) : B -1-1-onto-> D
)
5344, 47, 523imtr4g 263 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
x  e.  { f  |  f : A -1-1-onto-> C }  ->  ( ( h  o.  x )  o.  `' g )  e. 
{ f  |  f : B -1-1-onto-> D } ) )
54 f1ocnv 5689 . . . . . . . . 9  |-  ( h : C -1-1-onto-> D  ->  `' h : D -1-1-onto-> C )
5554ad2antlr 709 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  y : B -1-1-onto-> D
)  ->  `' h : D -1-1-onto-> C )
56 f1oco 5700 . . . . . . . . . 10  |-  ( ( y : B -1-1-onto-> D  /\  g : A -1-1-onto-> B )  ->  (
y  o.  g ) : A -1-1-onto-> D )
5756ancoms 441 . . . . . . . . 9  |-  ( ( g : A -1-1-onto-> B  /\  y : B -1-1-onto-> D )  ->  (
y  o.  g ) : A -1-1-onto-> D )
5857adantlr 697 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  y : B -1-1-onto-> D
)  ->  ( y  o.  g ) : A -1-1-onto-> D
)
59 f1oco 5700 . . . . . . . 8  |-  ( ( `' h : D -1-1-onto-> C  /\  ( y  o.  g
) : A -1-1-onto-> D )  ->  ( `' h  o.  ( y  o.  g
) ) : A -1-1-onto-> C
)
6055, 58, 59syl2anc 644 . . . . . . 7  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  y : B -1-1-onto-> D
)  ->  ( `' h  o.  ( y  o.  g ) ) : A -1-1-onto-> C )
6160ex 425 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
y : B -1-1-onto-> D  -> 
( `' h  o.  ( y  o.  g
) ) : A -1-1-onto-> C
) )
62 vex 2961 . . . . . . 7  |-  y  e. 
_V
63 f1oeq1 5667 . . . . . . 7  |-  ( f  =  y  ->  (
f : B -1-1-onto-> D  <->  y : B
-1-1-onto-> D ) )
6462, 63elab 3084 . . . . . 6  |-  ( y  e.  { f  |  f : B -1-1-onto-> D }  <->  y : B -1-1-onto-> D )
656cnvex 5408 . . . . . . . 8  |-  `' h  e.  _V
6662, 10coex 5415 . . . . . . . 8  |-  ( y  o.  g )  e. 
_V
6765, 66coex 5415 . . . . . . 7  |-  ( `' h  o.  ( y  o.  g ) )  e.  _V
68 f1oeq1 5667 . . . . . . 7  |-  ( f  =  ( `' h  o.  ( y  o.  g
) )  ->  (
f : A -1-1-onto-> C  <->  ( `' h  o.  ( y  o.  g ) ) : A -1-1-onto-> C ) )
6967, 68elab 3084 . . . . . 6  |-  ( ( `' h  o.  (
y  o.  g ) )  e.  { f  |  f : A -1-1-onto-> C } 
<->  ( `' h  o.  ( y  o.  g
) ) : A -1-1-onto-> C
)
7061, 64, 693imtr4g 263 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
y  e.  { f  |  f : B -1-1-onto-> D }  ->  ( `' h  o.  ( y  o.  g
) )  e.  {
f  |  f : A -1-1-onto-> C } ) )
7147, 64anbi12i 680 . . . . . 6  |-  ( ( x  e.  { f  |  f : A -1-1-onto-> C }  /\  y  e.  {
f  |  f : B -1-1-onto-> D } )  <->  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )
72 coass 5390 . . . . . . . . . . 11  |-  ( ( ( h  o.  x
)  o.  `' g )  o.  g )  =  ( ( h  o.  x )  o.  ( `' g  o.  g ) )
73 f1ococnv1 5706 . . . . . . . . . . . . . 14  |-  ( g : A -1-1-onto-> B  ->  ( `' g  o.  g )  =  (  _I  |`  A ) )
7473ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( `' g  o.  g )  =  (  _I  |`  A )
)
7574coeq2d 5037 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  ( `' g  o.  g
) )  =  ( ( h  o.  x
)  o.  (  _I  |`  A ) ) )
7639adantrr 699 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( h  o.  x
) : A -1-1-onto-> D )
77 f1of 5676 . . . . . . . . . . . . 13  |-  ( ( h  o.  x ) : A -1-1-onto-> D  ->  ( h  o.  x ) : A --> D )
78 fcoi1 5619 . . . . . . . . . . . . 13  |-  ( ( h  o.  x ) : A --> D  -> 
( ( h  o.  x )  o.  (  _I  |`  A ) )  =  ( h  o.  x ) )
7976, 77, 783syl 19 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  (  _I  |`  A ) )  =  ( h  o.  x ) )
8075, 79eqtrd 2470 . . . . . . . . . . 11  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  ( `' g  o.  g
) )  =  ( h  o.  x ) )
8172, 80syl5req 2483 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( h  o.  x
)  =  ( ( ( h  o.  x
)  o.  `' g )  o.  g ) )
82 coass 5390 . . . . . . . . . . 11  |-  ( ( h  o.  `' h
)  o.  ( y  o.  g ) )  =  ( h  o.  ( `' h  o.  ( y  o.  g
) ) )
83 f1ococnv2 5704 . . . . . . . . . . . . . 14  |-  ( h : C -1-1-onto-> D  ->  ( h  o.  `' h )  =  (  _I  |`  D )
)
8483ad2antlr 709 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( h  o.  `' h )  =  (  _I  |`  D )
)
8584coeq1d 5036 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  `' h )  o.  (
y  o.  g ) )  =  ( (  _I  |`  D )  o.  ( y  o.  g
) ) )
8658adantrl 698 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( y  o.  g
) : A -1-1-onto-> D )
87 f1of 5676 . . . . . . . . . . . . 13  |-  ( ( y  o.  g ) : A -1-1-onto-> D  ->  ( y  o.  g ) : A --> D )
88 fcoi2 5620 . . . . . . . . . . . . 13  |-  ( ( y  o.  g ) : A --> D  -> 
( (  _I  |`  D )  o.  ( y  o.  g ) )  =  ( y  o.  g
) )
8986, 87, 883syl 19 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( (  _I  |`  D )  o.  ( y  o.  g ) )  =  ( y  o.  g
) )
9085, 89eqtrd 2470 . . . . . . . . . . 11  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  `' h )  o.  (
y  o.  g ) )  =  ( y  o.  g ) )
9182, 90syl5eqr 2484 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( h  o.  ( `' h  o.  (
y  o.  g ) ) )  =  ( y  o.  g ) )
9281, 91eqeq12d 2452 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  =  ( h  o.  ( `' h  o.  ( y  o.  g ) ) )  <->  ( ( ( h  o.  x )  o.  `' g )  o.  g )  =  ( y  o.  g
) ) )
93 eqcom 2440 . . . . . . . . 9  |-  ( ( ( ( h  o.  x )  o.  `' g )  o.  g
)  =  ( y  o.  g )  <->  ( y  o.  g )  =  ( ( ( h  o.  x )  o.  `' g )  o.  g
) )
9492, 93syl6bb 254 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  =  ( h  o.  ( `' h  o.  ( y  o.  g ) ) )  <->  ( y  o.  g )  =  ( ( ( h  o.  x )  o.  `' g )  o.  g
) ) )
95 f1of1 5675 . . . . . . . . . 10  |-  ( h : C -1-1-onto-> D  ->  h : C -1-1-> D )
9695ad2antlr 709 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  ->  h : C -1-1-> D )
97 f1of 5676 . . . . . . . . . 10  |-  ( x : A -1-1-onto-> C  ->  x : A
--> C )
9897ad2antrl 710 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  ->  x : A --> C )
9960adantrl 698 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( `' h  o.  ( y  o.  g
) ) : A -1-1-onto-> C
)
100 f1of 5676 . . . . . . . . . 10  |-  ( ( `' h  o.  (
y  o.  g ) ) : A -1-1-onto-> C  -> 
( `' h  o.  ( y  o.  g
) ) : A --> C )
10199, 100syl 16 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( `' h  o.  ( y  o.  g
) ) : A --> C )
102 cocan1 6026 . . . . . . . . 9  |-  ( ( h : C -1-1-> D  /\  x : A --> C  /\  ( `' h  o.  (
y  o.  g ) ) : A --> C )  ->  ( ( h  o.  x )  =  ( h  o.  ( `' h  o.  (
y  o.  g ) ) )  <->  x  =  ( `' h  o.  (
y  o.  g ) ) ) )
10396, 98, 101, 102syl3anc 1185 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  =  ( h  o.  ( `' h  o.  ( y  o.  g ) ) )  <->  x  =  ( `' h  o.  (
y  o.  g ) ) ) )
10426ad2antrr 708 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
g : A -onto-> B
)
105 f1ofn 5677 . . . . . . . . . 10  |-  ( y : B -1-1-onto-> D  ->  y  Fn  B )
106105ad2antll 711 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
y  Fn  B )
10743adantrr 699 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  `' g ) : B -1-1-onto-> D
)
108 f1ofn 5677 . . . . . . . . . 10  |-  ( ( ( h  o.  x
)  o.  `' g ) : B -1-1-onto-> D  -> 
( ( h  o.  x )  o.  `' g )  Fn  B
)
109107, 108syl 16 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  `' g )  Fn  B
)
110 cocan2 6027 . . . . . . . . 9  |-  ( ( g : A -onto-> B  /\  y  Fn  B  /\  ( ( h  o.  x )  o.  `' g )  Fn  B
)  ->  ( (
y  o.  g )  =  ( ( ( h  o.  x )  o.  `' g )  o.  g )  <->  y  =  ( ( h  o.  x )  o.  `' g ) ) )
111104, 106, 109, 110syl3anc 1185 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( y  o.  g )  =  ( ( ( h  o.  x )  o.  `' g )  o.  g
)  <->  y  =  ( ( h  o.  x
)  o.  `' g ) ) )
11294, 103, 1113bitr3d 276 . . . . . . 7  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( x  =  ( `' h  o.  (
y  o.  g ) )  <->  y  =  ( ( h  o.  x
)  o.  `' g ) ) )
113112ex 425 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D )  ->  ( x  =  ( `' h  o.  ( y  o.  g
) )  <->  y  =  ( ( h  o.  x )  o.  `' g ) ) ) )
11471, 113syl5bi 210 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
( x  e.  {
f  |  f : A -1-1-onto-> C }  /\  y  e.  { f  |  f : B -1-1-onto-> D } )  -> 
( x  =  ( `' h  o.  (
y  o.  g ) )  <->  y  =  ( ( h  o.  x
)  o.  `' g ) ) ) )
11519, 37, 53, 70, 114en3d 7146 . . . 4  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  { f  |  f : B -1-1-onto-> D }
)
116115exlimivv 1646 . . 3  |-  ( E. g E. h ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  { f  |  f : B -1-1-onto-> D }
)
1173, 116sylbir 206 . 2  |-  ( ( E. g  g : A -1-1-onto-> B  /\  E. h  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  { f  |  f : B -1-1-onto-> D }
)
1181, 2, 117syl2anb 467 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  {
f  |  f : B -1-1-onto-> D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424   _Vcvv 2958    C_ wss 3322   class class class wbr 4214    _I cid 4495   `'ccnv 4879   dom cdm 4880   ran crn 4881    |` cres 4882    o. ccom 4884    Fn wfn 5451   -->wf 5452   -1-1->wf1 5453   -onto->wfo 5454   -1-1-onto->wf1o 5455  (class class class)co 6083    ^m cmap 7020    ~~ cen 7108
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-map 7022  df-en 7112
  Copyright terms: Public domain W3C validator