MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfun Structured version   Unicode version

Theorem hashfun 11702
Description: A finite set is a function iff it is equinumerous to its domain. (Contributed by Mario Carneiro, 26-Sep-2013.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
hashfun  |-  ( F  e.  Fin  ->  ( Fun  F  <->  ( # `  F
)  =  ( # `  dom  F ) ) )

Proof of Theorem hashfun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfn 5484 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 hashfn 11651 . . 3  |-  ( F  Fn  dom  F  -> 
( # `  F )  =  ( # `  dom  F ) )
31, 2sylbi 189 . 2  |-  ( Fun 
F  ->  ( # `  F
)  =  ( # `  dom  F ) )
4 dmfi 7391 . . . . . . . . . . 11  |-  ( F  e.  Fin  ->  dom  F  e.  Fin )
5 hashcl 11641 . . . . . . . . . . 11  |-  ( dom 
F  e.  Fin  ->  (
# `  dom  F )  e.  NN0 )
64, 5syl 16 . . . . . . . . . 10  |-  ( F  e.  Fin  ->  ( # `
 dom  F )  e.  NN0 )
76nn0red 10277 . . . . . . . . 9  |-  ( F  e.  Fin  ->  ( # `
 dom  F )  e.  RR )
87adantr 453 . . . . . . . 8  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  dom  F
)  e.  RR )
9 df-rel 4887 . . . . . . . . . . . . 13  |-  ( Rel 
F  <->  F  C_  ( _V 
X.  _V ) )
10 dfss3 3340 . . . . . . . . . . . . 13  |-  ( F 
C_  ( _V  X.  _V )  <->  A. x  e.  F  x  e.  ( _V  X.  _V ) )
119, 10bitri 242 . . . . . . . . . . . 12  |-  ( Rel 
F  <->  A. x  e.  F  x  e.  ( _V  X.  _V ) )
1211notbii 289 . . . . . . . . . . 11  |-  ( -. 
Rel  F  <->  -.  A. x  e.  F  x  e.  ( _V  X.  _V )
)
13 rexnal 2718 . . . . . . . . . . 11  |-  ( E. x  e.  F  -.  x  e.  ( _V  X.  _V )  <->  -.  A. x  e.  F  x  e.  ( _V  X.  _V )
)
1412, 13bitr4i 245 . . . . . . . . . 10  |-  ( -. 
Rel  F  <->  E. x  e.  F  -.  x  e.  ( _V  X.  _V ) )
15 dmun 5078 . . . . . . . . . . . . . . . 16  |-  dom  (
( F  \  {
x } )  u. 
{ x } )  =  ( dom  ( F  \  { x }
)  u.  dom  {
x } )
1615fveq2i 5733 . . . . . . . . . . . . . . 15  |-  ( # `  dom  ( ( F 
\  { x }
)  u.  { x } ) )  =  ( # `  ( dom  ( F  \  {
x } )  u. 
dom  { x } ) )
17 dmsnn0 5337 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( _V  X.  _V )  <->  dom  { x }  =/=  (/) )
1817biimpri 199 . . . . . . . . . . . . . . . . . . . 20  |-  ( dom 
{ x }  =/=  (/) 
->  x  e.  ( _V  X.  _V ) )
1918necon1bi 2649 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  x  e.  ( _V 
X.  _V )  ->  dom  { x }  =  (/) )
20193ad2ant3 981 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  dom  { x }  =  (/) )
2120uneq2d 3503 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( dom  ( F  \  { x }
)  u.  dom  {
x } )  =  ( dom  ( F 
\  { x }
)  u.  (/) ) )
22 un0 3654 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( F  \  {
x } )  u.  (/) )  =  dom  ( F  \  { x } )
2321, 22syl6eq 2486 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( dom  ( F  \  { x }
)  u.  dom  {
x } )  =  dom  ( F  \  { x } ) )
2423fveq2d 5734 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  ( dom  ( F  \  {
x } )  u. 
dom  { x } ) )  =  ( # `  dom  ( F  \  { x } ) ) )
2516, 24syl5eq 2482 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  =  (
# `  dom  ( F 
\  { x }
) ) )
26 diffi 7341 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  Fin  ->  ( F  \  { x }
)  e.  Fin )
27 dmfi 7391 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  \  { x } )  e.  Fin  ->  dom  ( F  \  { x } )  e.  Fin )
2826, 27syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  Fin  ->  dom  ( F  \  { x } )  e.  Fin )
29 hashcl 11641 . . . . . . . . . . . . . . . . . 18  |-  ( dom  ( F  \  {
x } )  e. 
Fin  ->  ( # `  dom  ( F  \  { x } ) )  e. 
NN0 )
3028, 29syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  e.  NN0 )
3130nn0red 10277 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  e.  RR )
32 hashcl 11641 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  e.  Fin  ->  ( # `  ( F  \  { x }
) )  e.  NN0 )
3326, 32syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  e.  NN0 )
3433nn0red 10277 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  e.  RR )
35 peano2re 9241 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  ( F  \  { x } ) )  e.  RR  ->  ( ( # `  ( F  \  { x }
) )  +  1 )  e.  RR )
3634, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  (
( # `  ( F 
\  { x }
) )  +  1 )  e.  RR )
37 fidomdm 7390 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  e.  Fin  ->  dom  ( F  \  { x } )  ~<_  ( F  \  {
x } ) )
3826, 37syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  dom  ( F  \  { x } )  ~<_  ( F 
\  { x }
) )
39 hashdom 11655 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( F  \  { x } )  e.  Fin  /\  ( F  \  { x }
)  e.  Fin )  ->  ( ( # `  dom  ( F  \  { x } ) )  <_ 
( # `  ( F 
\  { x }
) )  <->  dom  ( F 
\  { x }
)  ~<_  ( F  \  { x } ) ) )
4028, 26, 39syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { x }
) )  <_  ( # `
 ( F  \  { x } ) )  <->  dom  ( F  \  { x } )  ~<_  ( F  \  {
x } ) ) )
4138, 40mpbird 225 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  <_  ( # `  ( F  \  { x }
) ) )
4234ltp1d 9943 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { x } ) )  <  ( (
# `  ( F  \  { x } ) )  +  1 ) )
4331, 34, 36, 41, 42lelttrd 9230 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { x } ) )  <  ( (
# `  ( F  \  { x } ) )  +  1 ) )
44433ad2ant1 979 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( F  \  { x } ) )  < 
( ( # `  ( F  \  { x }
) )  +  1 ) )
4525, 44eqbrtrd 4234 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  <  (
( # `  ( F 
\  { x }
) )  +  1 ) )
46 snfi 7189 . . . . . . . . . . . . . . . . 17  |-  { x }  e.  Fin
47 incom 3535 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { x } )  i^i  {
x } )  =  ( { x }  i^i  ( F  \  {
x } ) )
48 disjdif 3702 . . . . . . . . . . . . . . . . . 18  |-  ( { x }  i^i  ( F  \  { x }
) )  =  (/)
4947, 48eqtri 2458 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { x } )  i^i  {
x } )  =  (/)
50 hashun 11658 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  \  {
x } )  e. 
Fin  /\  { x }  e.  Fin  /\  (
( F  \  {
x } )  i^i 
{ x } )  =  (/) )  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( ( # `  ( F  \  { x }
) )  +  (
# `  { x } ) ) )
5146, 49, 50mp3an23 1272 . . . . . . . . . . . . . . . 16  |-  ( ( F  \  { x } )  e.  Fin  ->  ( # `  (
( F  \  {
x } )  u. 
{ x } ) )  =  ( (
# `  ( F  \  { x } ) )  +  ( # `  { x } ) ) )
5226, 51syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( ( # `  ( F  \  { x }
) )  +  (
# `  { x } ) ) )
53 vex 2961 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
54 hashsng 11649 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  ( # `
 { x }
)  =  1 )
5553, 54ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( # `  { x } )  =  1
5655oveq2i 6094 . . . . . . . . . . . . . . 15  |-  ( (
# `  ( F  \  { x } ) )  +  ( # `  { x } ) )  =  ( (
# `  ( F  \  { x } ) )  +  1 )
5752, 56syl6req 2487 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
( # `  ( F 
\  { x }
) )  +  1 )  =  ( # `  ( ( F  \  { x } )  u.  { x }
) ) )
58573ad2ant1 979 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( ( # `  ( F  \  {
x } ) )  +  1 )  =  ( # `  (
( F  \  {
x } )  u. 
{ x } ) ) )
5945, 58breqtrd 4238 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  <  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) ) )
60 difsnid 3946 . . . . . . . . . . . . . . 15  |-  ( x  e.  F  ->  (
( F  \  {
x } )  u. 
{ x } )  =  F )
6160dmeqd 5074 . . . . . . . . . . . . . 14  |-  ( x  e.  F  ->  dom  ( ( F  \  { x } )  u.  { x }
)  =  dom  F
)
6261fveq2d 5734 . . . . . . . . . . . . 13  |-  ( x  e.  F  ->  ( # `
 dom  ( ( F  \  { x }
)  u.  { x } ) )  =  ( # `  dom  F ) )
63623ad2ant2 980 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  ( ( F  \  { x } )  u.  { x }
) )  =  (
# `  dom  F ) )
6460fveq2d 5734 . . . . . . . . . . . . 13  |-  ( x  e.  F  ->  ( # `
 ( ( F 
\  { x }
)  u.  { x } ) )  =  ( # `  F
) )
65643ad2ant2 980 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  (
( F  \  {
x } )  u. 
{ x } ) )  =  ( # `  F ) )
6659, 63, 653brtr3d 4243 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  x  e.  F  /\  -.  x  e.  ( _V  X.  _V ) )  ->  ( # `  dom  F )  <  ( # `  F ) )
6766rexlimdv3a 2834 . . . . . . . . . 10  |-  ( F  e.  Fin  ->  ( E. x  e.  F  -.  x  e.  ( _V  X.  _V )  -> 
( # `  dom  F
)  <  ( # `  F
) ) )
6814, 67syl5bi 210 . . . . . . . . 9  |-  ( F  e.  Fin  ->  ( -.  Rel  F  ->  ( # `
 dom  F )  <  ( # `  F
) ) )
6968imp 420 . . . . . . . 8  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  dom  F
)  <  ( # `  F
) )
708, 69gtned 9210 . . . . . . 7  |-  ( ( F  e.  Fin  /\  -.  Rel  F )  -> 
( # `  F )  =/=  ( # `  dom  F ) )
7170ex 425 . . . . . 6  |-  ( F  e.  Fin  ->  ( -.  Rel  F  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
7271necon4bd 2668 . . . . 5  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  Rel  F ) )
7372imp 420 . . . 4  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  Rel  F )
74 2nalexn 1583 . . . . . . . 8  |-  ( -. 
A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y  -.  A. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
75 df-ne 2603 . . . . . . . . . . . . 13  |-  ( y  =/=  z  <->  -.  y  =  z )
7675anbi2i 677 . . . . . . . . . . . 12  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  -.  y  =  z ) )
77 annim 416 . . . . . . . . . . . 12  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  -.  y  =  z )  <->  -.  (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
7876, 77bitri 242 . . . . . . . . . . 11  |-  ( ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  -.  (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
7978exbii 1593 . . . . . . . . . 10  |-  ( E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  <->  E. z  -.  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
80 exnal 1584 . . . . . . . . . 10  |-  ( E. z  -.  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  -.  A. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  -> 
y  =  z ) )
8179, 80bitr2i 243 . . . . . . . . 9  |-  ( -. 
A. z ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. z
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )
82812exbii 1594 . . . . . . . 8  |-  ( E. x E. y  -. 
A. z ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y E. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z ) )
8374, 82bitri 242 . . . . . . 7  |-  ( -. 
A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  <->  E. x E. y E. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z ) )
847adantr 453 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  e.  RR )
85 2re 10071 . . . . . . . . . . . . 13  |-  2  e.  RR
86 diffi 7341 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
87 dmfi 7391 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
8886, 87syl 16 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )
89 hashcl 11641 . . . . . . . . . . . . . . . 16  |-  ( dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } )  e.  Fin  ->  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  NN0 )
9088, 89syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
9190nn0red 10277 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )
9291adantr 453 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )
93 readdcl 9075 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
9485, 92, 93sylancr 646 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
95 hashcl 11641 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  ( # `
 F )  e. 
NN0 )
9695nn0red 10277 . . . . . . . . . . . . 13  |-  ( F  e.  Fin  ->  ( # `
 F )  e.  RR )
9796adantr 453 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  F
)  e.  RR )
98 1re 9092 . . . . . . . . . . . . . . 15  |-  1  e.  RR
99 readdcl 9075 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
10098, 91, 99sylancr 646 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  e.  RR )
101100adantr 453 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
10285, 91, 93sylancr 646 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  e.  RR )
103102adantr 453 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  e.  RR )
104 dmun 5078 . . . . . . . . . . . . . . . . . 18  |-  dom  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  ( dom 
{ <. x ,  y
>. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )
105 opex 4429 . . . . . . . . . . . . . . . . . . . . . 22  |-  <. x ,  y >.  e.  _V
106 opex 4429 . . . . . . . . . . . . . . . . . . . . . 22  |-  <. x ,  z >.  e.  _V
107105, 106prss 3954 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  <->  { <. x ,  y
>. ,  <. x ,  z >. }  C_  F
)
108 undif 3710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( {
<. x ,  y >. ,  <. x ,  z
>. }  C_  F  <->  ( { <. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
109107, 108bitri 242 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  <->  ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
110109biimpi 188 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( { <. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  F )
111110dmeqd 5074 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  ( {
<. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  dom  F
)
112104, 111syl5reqr 2485 . . . . . . . . . . . . . . . . 17  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  F  =  ( dom  { <. x ,  y >. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) )
113 vex 2961 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
114 vex 2961 . . . . . . . . . . . . . . . . . . . 20  |-  z  e. 
_V
115113, 114dmprop 5347 . . . . . . . . . . . . . . . . . . 19  |-  dom  { <. x ,  y >. ,  <. x ,  z
>. }  =  { x ,  x }
116 dfsn2 3830 . . . . . . . . . . . . . . . . . . 19  |-  { x }  =  { x ,  x }
117115, 116eqtr4i 2461 . . . . . . . . . . . . . . . . . 18  |-  dom  { <. x ,  y >. ,  <. x ,  z
>. }  =  { x }
118117uneq1i 3499 . . . . . . . . . . . . . . . . 17  |-  ( dom 
{ <. x ,  y
>. ,  <. x ,  z >. }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )
119112, 118syl6eq 2486 . . . . . . . . . . . . . . . 16  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  dom  F  =  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )
120119fveq2d 5734 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( # `  dom  F )  =  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
121120ad2antrl 710 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  =  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
122 hashun2 11659 . . . . . . . . . . . . . . . . 17  |-  ( ( { x }  e.  Fin  /\  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin )  -> 
( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
( # `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
12346, 88, 122sylancr 646 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( { x }  u.  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
( # `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
12455oveq1i 6093 . . . . . . . . . . . . . . . 16  |-  ( (
# `  { x } )  +  (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )
125123, 124syl6breq 4253 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( { x }  u.  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
126125adantr 453 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { x }  u.  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) )  <_  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
127121, 126eqbrtrd 4234 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <_  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
128 1lt2 10144 . . . . . . . . . . . . . . 15  |-  1  <  2
129 ltadd1 9497 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )  -> 
( 1  <  2  <->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) ) )
13098, 85, 129mp3an12 1270 . . . . . . . . . . . . . . . 16  |-  ( (
# `  dom  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  ->  ( 1  <  2  <->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) ) )
13191, 130syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  (
1  <  2  <->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) ) )
132128, 131mpbii 204 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
1  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
133132adantr 453 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 1  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
13484, 101, 103, 127, 133lelttrd 9230 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
135 fidomdm 7390 . . . . . . . . . . . . . . . . 17  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) )
13686, 135syl 16 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) )
137 hashdom 11655 . . . . . . . . . . . . . . . . 17  |-  ( ( dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  e. 
Fin  /\  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  e. 
Fin )  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
13888, 86, 137syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } )  ~<_  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
139136, 138mpbird 225 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )
140 hashcl 11641 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
14186, 140syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  NN0 )
142141nn0red 10277 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Fin  ->  ( # `
 ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  e.  RR )
143 leadd2 9499 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  ( # `  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  2  e.  RR )  ->  ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
14485, 143mp3an3 1269 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR  /\  ( # `  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  e.  RR )  ->  ( ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
14591, 142, 144syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  (
( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <_  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  <->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) ) )
146139, 145mpbid 203 . . . . . . . . . . . . . 14  |-  ( F  e.  Fin  ->  (
2  +  ( # `  dom  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) )  <_  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) ) )
147146adantr 453 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  (
2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
148 prfi 7383 . . . . . . . . . . . . . . . . 17  |-  { <. x ,  y >. ,  <. x ,  z >. }  e.  Fin
149 disjdif 3702 . . . . . . . . . . . . . . . . 17  |-  ( {
<. x ,  y >. ,  <. x ,  z
>. }  i^i  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  (/)
150 hashun 11658 . . . . . . . . . . . . . . . . 17  |-  ( ( { <. x ,  y
>. ,  <. x ,  z >. }  e.  Fin  /\  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } )  e.  Fin  /\  ( { <. x ,  y >. ,  <. x ,  z >. }  i^i  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) )  =  (/) )  -> 
( # `  ( {
<. x ,  y >. ,  <. x ,  z
>. }  u.  ( F 
\  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
151148, 149, 150mp3an13 1271 . . . . . . . . . . . . . . . 16  |-  ( ( F  \  { <. x ,  y >. ,  <. x ,  z >. } )  e.  Fin  ->  ( # `
 ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
15286, 151syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e.  Fin  ->  ( # `
 ( { <. x ,  y >. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
153152adantr 453 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  +  (
# `  ( F  \  { <. x ,  y
>. ,  <. x ,  z >. } ) ) ) )
154110fveq2d 5734 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
155154ad2antrl 710 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  ( { <. x ,  y
>. ,  <. x ,  z >. }  u.  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
15653, 113opth 4437 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
x ,  y >.  =  <. x ,  z
>. 
<->  ( x  =  x  /\  y  =  z ) )
157156simprbi 452 . . . . . . . . . . . . . . . . . 18  |-  ( <.
x ,  y >.  =  <. x ,  z
>.  ->  y  =  z )
158157necon3i 2645 . . . . . . . . . . . . . . . . 17  |-  ( y  =/=  z  ->  <. x ,  y >.  =/=  <. x ,  z >. )
159 hashprg 11668 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. x ,  y >.  e.  _V  /\  <. x ,  z >.  e.  _V )  ->  ( <. x ,  y >.  =/=  <. x ,  z >.  <->  ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  =  2 ) )
160105, 106, 159mp2an 655 . . . . . . . . . . . . . . . . 17  |-  ( <.
x ,  y >.  =/=  <. x ,  z
>. 
<->  ( # `  { <. x ,  y >. ,  <. x ,  z
>. } )  =  2 )
161158, 160sylib 190 . . . . . . . . . . . . . . . 16  |-  ( y  =/=  z  ->  ( # `
 { <. x ,  y >. ,  <. x ,  z >. } )  =  2 )
162161oveq1d 6098 . . . . . . . . . . . . . . 15  |-  ( y  =/=  z  ->  (
( # `  { <. x ,  y >. ,  <. x ,  z >. } )  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
163162ad2antll 711 . . . . . . . . . . . . . 14  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( ( # `  { <. x ,  y
>. ,  <. x ,  z >. } )  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z
>. } ) ) ) )
164153, 155, 1633eqtr3rd 2479 . . . . . . . . . . . . 13  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  =  (
# `  F )
)
165147, 164breqtrd 4238 . . . . . . . . . . . 12  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( 2  +  ( # `  dom  ( F  \  { <. x ,  y >. ,  <. x ,  z >. } ) ) )  <_  ( # `
 F ) )
16684, 94, 97, 134, 165ltletrd 9232 . . . . . . . . . . 11  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  dom  F )  <  ( # `  F ) )
16784, 166gtned 9210 . . . . . . . . . 10  |-  ( ( F  e.  Fin  /\  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z ) )  ->  ( # `  F
)  =/=  ( # `  dom  F ) )
168167ex 425 . . . . . . . . 9  |-  ( F  e.  Fin  ->  (
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  /\  y  =/=  z )  -> 
( # `  F )  =/=  ( # `  dom  F ) ) )
169168exlimdv 1647 . . . . . . . 8  |-  ( F  e.  Fin  ->  ( E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
170169exlimdvv 1648 . . . . . . 7  |-  ( F  e.  Fin  ->  ( E. x E. y E. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  /\  y  =/=  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
17183, 170syl5bi 210 . . . . . 6  |-  ( F  e.  Fin  ->  ( -.  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z )  ->  ( # `
 F )  =/=  ( # `  dom  F ) ) )
172171necon4bd 2668 . . . . 5  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
173172imp 420 . . . 4  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
174 dffun4 5468 . . . 4  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
17573, 173, 174sylanbrc 647 . . 3  |-  ( ( F  e.  Fin  /\  ( # `  F )  =  ( # `  dom  F ) )  ->  Fun  F )
176175ex 425 . 2  |-  ( F  e.  Fin  ->  (
( # `  F )  =  ( # `  dom  F )  ->  Fun  F ) )
1773, 176impbid2 197 1  |-  ( F  e.  Fin  ->  ( Fun  F  <->  ( # `  F
)  =  ( # `  dom  F ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958    \ cdif 3319    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   {csn 3816   {cpr 3817   <.cop 3819   class class class wbr 4214    X. cxp 4878   dom cdm 4880   Rel wrel 4885   Fun wfun 5450    Fn wfn 5451   ` cfv 5456  (class class class)co 6083    ~<_ cdom 7109   Fincfn 7111   RRcr 8991   1c1 8993    + caddc 8995    < clt 9122    <_ cle 9123   2c2 10051   NN0cn0 10223   #chash 11620
This theorem is referenced by:  cusgrasizeinds  21487  hashfirdm  28176  hashfzdm  28177
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-hash 11621
  Copyright terms: Public domain W3C validator