MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfz Structured version   Unicode version

Theorem hashfz 11684
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hashfz  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( # `  ( A ... B ) )  =  ( ( B  -  A )  +  1 ) )

Proof of Theorem hashfz
StepHypRef Expression
1 eluzel2 10485 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
2 eluzelz 10488 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
3 1z 10303 . . . . . 6  |-  1  e.  ZZ
4 zsubcl 10311 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  -  A
)  e.  ZZ )
53, 1, 4sylancr 645 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( 1  -  A )  e.  ZZ )
6 fzen 11064 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  (
1  -  A )  e.  ZZ )  -> 
( A ... B
)  ~~  ( ( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A
) ) ) )
71, 2, 5, 6syl3anc 1184 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  ~~  (
( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A ) ) ) )
81zcnd 10368 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
9 ax-1cn 9040 . . . . . 6  |-  1  e.  CC
10 pncan3 9305 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  ( 1  -  A ) )  =  1 )
118, 9, 10sylancl 644 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  +  ( 1  -  A ) )  =  1 )
122zcnd 10368 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  CC )
139a1i 11 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  CC )
1412, 13, 8addsub12d 9426 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  ( 1  -  A ) )  =  ( 1  +  ( B  -  A ) ) )
1512, 8subcld 9403 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  CC )
16 addcom 9244 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( B  -  A
)  e.  CC )  ->  ( 1  +  ( B  -  A
) )  =  ( ( B  -  A
)  +  1 ) )
179, 15, 16sylancr 645 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( 1  +  ( B  -  A ) )  =  ( ( B  -  A )  +  1 ) )
1814, 17eqtrd 2467 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  ( 1  -  A ) )  =  ( ( B  -  A )  +  1 ) )
1911, 18oveq12d 6091 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A
) ) )  =  ( 1 ... (
( B  -  A
)  +  1 ) ) )
207, 19breqtrd 4228 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  ~~  (
1 ... ( ( B  -  A )  +  1 ) ) )
21 hasheni 11624 . . 3  |-  ( ( A ... B ) 
~~  ( 1 ... ( ( B  -  A )  +  1 ) )  ->  ( # `
 ( A ... B ) )  =  ( # `  (
1 ... ( ( B  -  A )  +  1 ) ) ) )
2220, 21syl 16 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( # `  ( A ... B ) )  =  ( # `  (
1 ... ( ( B  -  A )  +  1 ) ) ) )
23 uznn0sub 10509 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  NN0 )
24 peano2nn0 10252 . . 3  |-  ( ( B  -  A )  e.  NN0  ->  ( ( B  -  A )  +  1 )  e. 
NN0 )
25 hashfz1 11622 . . 3  |-  ( ( ( B  -  A
)  +  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( B  -  A
)  +  1 ) ) )  =  ( ( B  -  A
)  +  1 ) )
2623, 24, 253syl 19 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( # `  (
1 ... ( ( B  -  A )  +  1 ) ) )  =  ( ( B  -  A )  +  1 ) )
2722, 26eqtrd 2467 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( # `  ( A ... B ) )  =  ( ( B  -  A )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073    ~~ cen 7098   CCcc 8980   1c1 8983    + caddc 8985    - cmin 9283   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035   #chash 11610
This theorem is referenced by:  fzsdom2  11685  hashfzo  11686  0sgmppw  20974  logfaclbnd  20998  ballotlem2  24738  subfacp1lem5  24862  stoweidlem11  27727  stoweidlem26  27742  hashfzdm  28144
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-hash 11611
  Copyright terms: Public domain W3C validator