MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfz1 Unicode version

Theorem hashfz1 11361
Description: The set  (
1 ... N ) has  N elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )

Proof of Theorem hashfz1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  =  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )
21cardfz 11048 . . 3  |-  ( N  e.  NN0  ->  ( card `  ( 1 ... N
) )  =  ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  N ) )
32fveq2d 5545 . 2  |-  ( N  e.  NN0  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... N
) ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  N ) ) )
4 fzfid 11051 . . 3  |-  ( N  e.  NN0  ->  ( 1 ... N )  e. 
Fin )
51hashgval 11356 . . 3  |-  ( ( 1 ... N )  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... N ) ) )  =  ( # `  (
1 ... N ) ) )
64, 5syl 15 . 2  |-  ( N  e.  NN0  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... N
) ) )  =  ( # `  (
1 ... N ) ) )
71hashgf1o 11049 . . 3  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) : om -1-1-onto-> NN0
8 f1ocnvfv2 5809 . . 3  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) : om -1-1-onto-> NN0  /\  N  e.  NN0 )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  N ) )  =  N )
97, 8mpan 651 . 2  |-  ( N  e.  NN0  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  N
) )  =  N )
103, 6, 93eqtr3d 2336 1  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   _Vcvv 2801    e. cmpt 4093   omcom 4672   `'ccnv 4704    |` cres 4707   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   reccrdg 6438   Fincfn 6879   cardccrd 7584   0cc0 8753   1c1 8754    + caddc 8756   NN0cn0 9981   ...cfz 10798   #chash 11353
This theorem is referenced by:  fz1eqb  11364  hasheq0  11369  hashsng  11372  fseq1hash  11374  hashdom  11377  hashfz  11397  isercolllem2  12155  isercoll  12157  fz1f1o  12199  summolem3  12203  summolem2a  12204  o1fsum  12287  climcndslem1  12324  climcndslem2  12325  harmonic  12333  mertenslem1  12356  phicl2  12852  phibnd  12855  hashdvds  12859  phiprmpw  12860  eulerth  12867  pcfac  12963  prmreclem2  12980  prmreclem3  12981  prmreclem5  12983  4sqlem11  13018  vdwlem12  13055  ramub2  13077  ramlb  13082  0ram  13083  ram0  13085  dfod2  14893  gsumval3  15207  uniioombllem4  18957  birthdaylem2  20263  birthdaylem3  20264  basellem4  20337  basellem5  20338  basellem8  20341  ppiltx  20431  vmasum  20471  logfac2  20472  chpval2  20473  chpchtsum  20474  chpub  20475  logfaclbnd  20477  bposlem1  20539  lgsqrlem4  20599  lgseisenlem4  20607  lgsquadlem1  20609  lgsquadlem2  20610  lgsquadlem3  20611  dchrmusum2  20659  dchrisum0lem2a  20682  mudivsum  20695  mulogsumlem  20696  selberglem2  20711  ballotlem1  23061  ballotlemfmpn  23069  ishashinf  23404  derangen2  23720  subfaclefac  23722  subfacp1lem1  23725  erdszelem10  23746  erdsze2lem1  23749  eupai  23898  snmlff  23927  prodmolem3  24156  prodmolem2a  24157  bpolylem  24855  eldioph2lem1  26942  stoweidlem38  27890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-hash 11354
  Copyright terms: Public domain W3C validator