Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashgcdlem Structured version   Unicode version

Theorem hashgcdlem 27493
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
hashgcdlem.a  |-  A  =  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
hashgcdlem.b  |-  B  =  { z  e.  ( 0..^ M )  |  ( z  gcd  M
)  =  N }
hashgcdlem.f  |-  F  =  ( x  e.  A  |->  ( x  x.  N
) )
Assertion
Ref Expression
hashgcdlem  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  F : A -1-1-onto-> B )
Distinct variable groups:    x, y, M    x, z, M    x, A    x, B    x, N, y    z, N
Allowed substitution hints:    A( y, z)    B( y, z)    F( x, y, z)

Proof of Theorem hashgcdlem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 hashgcdlem.f . 2  |-  F  =  ( x  e.  A  |->  ( x  x.  N
) )
2 oveq1 6088 . . . . 5  |-  ( y  =  x  ->  (
y  gcd  ( M  /  N ) )  =  ( x  gcd  ( M  /  N ) ) )
32eqeq1d 2444 . . . 4  |-  ( y  =  x  ->  (
( y  gcd  ( M  /  N ) )  =  1  <->  ( x  gcd  ( M  /  N
) )  =  1 ) )
4 hashgcdlem.a . . . 4  |-  A  =  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
53, 4elrab2 3094 . . 3  |-  ( x  e.  A  <->  ( x  e.  ( 0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N
) )  =  1 ) )
6 elfzofz 11154 . . . . . . . 8  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  e.  ( 0 ... ( M  /  N ) ) )
7 elfznn0 11083 . . . . . . . 8  |-  ( x  e.  ( 0 ... ( M  /  N
) )  ->  x  e.  NN0 )
86, 7syl 16 . . . . . . 7  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  e.  NN0 )
98ad2antrl 709 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  e.  NN0 )
10 nnnn0 10228 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
11103ad2ant2 979 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  e.  NN0 )
1211adantr 452 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  N  e.  NN0 )
139, 12nn0mulcld 10279 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  e.  NN0 )
14 simpl1 960 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  M  e.  NN )
15 elfzolt2 11148 . . . . . . 7  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  <  ( M  /  N ) )
1615ad2antrl 709 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  <  ( M  /  N ) )
17 elfzoelz 11140 . . . . . . . . 9  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  e.  ZZ )
1817ad2antrl 709 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  e.  ZZ )
1918zred 10375 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  e.  RR )
20 nnre 10007 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  RR )
21203ad2ant1 978 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  M  e.  RR )
2221adantr 452 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  M  e.  RR )
23 nnre 10007 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR )
24 nngt0 10029 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  N )
2523, 24jca 519 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
26253ad2ant2 979 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( N  e.  RR  /\  0  <  N ) )
2726adantr 452 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( N  e.  RR  /\  0  < 
N ) )
28 ltmuldiv 9880 . . . . . . 7  |-  ( ( x  e.  RR  /\  M  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( x  x.  N )  <  M  <->  x  <  ( M  /  N ) ) )
2919, 22, 27, 28syl3anc 1184 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  < 
M  <->  x  <  ( M  /  N ) ) )
3016, 29mpbird 224 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  <  M
)
31 elfzo0 11171 . . . . 5  |-  ( ( x  x.  N )  e.  ( 0..^ M )  <->  ( ( x  x.  N )  e. 
NN0  /\  M  e.  NN  /\  ( x  x.  N )  <  M
) )
3213, 14, 30, 31syl3anbrc 1138 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  e.  ( 0..^ M ) )
33 nncn 10008 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  CC )
34333ad2ant1 978 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  M  e.  CC )
35 nncn 10008 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
36353ad2ant2 979 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  e.  CC )
37 nnne0 10032 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
38373ad2ant2 979 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  =/=  0 )
3934, 36, 38divcan1d 9791 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
( M  /  N
)  x.  N )  =  M )
4039adantr 452 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( M  /  N )  x.  N )  =  M )
4140eqcomd 2441 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  M  =  ( ( M  /  N
)  x.  N ) )
4241oveq2d 6097 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  gcd 
M )  =  ( ( x  x.  N
)  gcd  ( ( M  /  N )  x.  N ) ) )
43 nndivdvds 12858 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
4443biimp3a 1283 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( M  /  N )  e.  NN )
4544nnzd 10374 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( M  /  N )  e.  ZZ )
4645adantr 452 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( M  /  N )  e.  ZZ )
47 mulgcdr 13048 . . . . . 6  |-  ( ( x  e.  ZZ  /\  ( M  /  N
)  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( x  x.  N )  gcd  (
( M  /  N
)  x.  N ) )  =  ( ( x  gcd  ( M  /  N ) )  x.  N ) )
4818, 46, 12, 47syl3anc 1184 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  gcd  ( ( M  /  N )  x.  N
) )  =  ( ( x  gcd  ( M  /  N ) )  x.  N ) )
49 simprr 734 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  gcd  ( M  /  N
) )  =  1 )
5049oveq1d 6096 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  gcd  ( M  /  N ) )  x.  N )  =  ( 1  x.  N ) )
5136mulid2d 9106 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
1  x.  N )  =  N )
5251adantr 452 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( 1  x.  N )  =  N )
5350, 52eqtrd 2468 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  gcd  ( M  /  N ) )  x.  N )  =  N )
5442, 48, 533eqtrd 2472 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  gcd 
M )  =  N )
55 oveq1 6088 . . . . . 6  |-  ( z  =  ( x  x.  N )  ->  (
z  gcd  M )  =  ( ( x  x.  N )  gcd 
M ) )
5655eqeq1d 2444 . . . . 5  |-  ( z  =  ( x  x.  N )  ->  (
( z  gcd  M
)  =  N  <->  ( (
x  x.  N )  gcd  M )  =  N ) )
57 hashgcdlem.b . . . . 5  |-  B  =  { z  e.  ( 0..^ M )  |  ( z  gcd  M
)  =  N }
5856, 57elrab2 3094 . . . 4  |-  ( ( x  x.  N )  e.  B  <->  ( (
x  x.  N )  e.  ( 0..^ M )  /\  ( ( x  x.  N )  gcd  M )  =  N ) )
5932, 54, 58sylanbrc 646 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  e.  B
)
605, 59sylan2b 462 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  x  e.  A )  ->  ( x  x.  N
)  e.  B )
61 oveq1 6088 . . . . 5  |-  ( z  =  w  ->  (
z  gcd  M )  =  ( w  gcd  M ) )
6261eqeq1d 2444 . . . 4  |-  ( z  =  w  ->  (
( z  gcd  M
)  =  N  <->  ( w  gcd  M )  =  N ) )
6362, 57elrab2 3094 . . 3  |-  ( w  e.  B  <->  ( w  e.  ( 0..^ M )  /\  ( w  gcd  M )  =  N ) )
64 simprr 734 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  gcd  M )  =  N )
65 elfzoelz 11140 . . . . . . . . . . 11  |-  ( w  e.  ( 0..^ M )  ->  w  e.  ZZ )
6665ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  e.  ZZ )
67 simpl1 960 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  M  e.  NN )
6867nnzd 10374 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  M  e.  ZZ )
69 gcddvds 13015 . . . . . . . . . 10  |-  ( ( w  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( w  gcd  M )  ||  w  /\  ( w  gcd  M ) 
||  M ) )
7066, 68, 69syl2anc 643 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  gcd  M )  ||  w  /\  ( w  gcd  M )  ||  M ) )
7170simpld 446 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  gcd  M )  ||  w )
7264, 71eqbrtrrd 4234 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  ||  w
)
73 nnz 10303 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
74733ad2ant2 979 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  e.  ZZ )
7574adantr 452 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  e.  ZZ )
7638adantr 452 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  =/=  0
)
77 dvdsval2 12855 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  w  e.  ZZ )  ->  ( N  ||  w  <->  ( w  /  N )  e.  ZZ ) )
7875, 76, 66, 77syl3anc 1184 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( N  ||  w 
<->  ( w  /  N
)  e.  ZZ ) )
7972, 78mpbid 202 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  ZZ )
80 elfzofz 11154 . . . . . . . . 9  |-  ( w  e.  ( 0..^ M )  ->  w  e.  ( 0 ... M
) )
8180ad2antrl 709 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  e.  ( 0 ... M ) )
82 elfznn0 11083 . . . . . . . 8  |-  ( w  e.  ( 0 ... M )  ->  w  e.  NN0 )
83 nn0re 10230 . . . . . . . . 9  |-  ( w  e.  NN0  ->  w  e.  RR )
84 nn0ge0 10247 . . . . . . . . 9  |-  ( w  e.  NN0  ->  0  <_  w )
8583, 84jca 519 . . . . . . . 8  |-  ( w  e.  NN0  ->  ( w  e.  RR  /\  0  <_  w ) )
8681, 82, 853syl 19 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  e.  RR  /\  0  <_  w ) )
8726adantr 452 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( N  e.  RR  /\  0  < 
N ) )
88 divge0 9879 . . . . . . 7  |-  ( ( ( w  e.  RR  /\  0  <_  w )  /\  ( N  e.  RR  /\  0  <  N ) )  ->  0  <_  ( w  /  N ) )
8986, 87, 88syl2anc 643 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  0  <_  (
w  /  N ) )
90 elnn0z 10294 . . . . . 6  |-  ( ( w  /  N )  e.  NN0  <->  ( ( w  /  N )  e.  ZZ  /\  0  <_ 
( w  /  N
) ) )
9179, 89, 90sylanbrc 646 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  NN0 )
9244adantr 452 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( M  /  N )  e.  NN )
93 elfzolt2 11148 . . . . . . 7  |-  ( w  e.  ( 0..^ M )  ->  w  <  M )
9493ad2antrl 709 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  <  M
)
9566zred 10375 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  e.  RR )
9621adantr 452 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  M  e.  RR )
97 ltdiv1 9874 . . . . . . 7  |-  ( ( w  e.  RR  /\  M  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( w  <  M  <->  ( w  /  N )  <  ( M  /  N ) ) )
9895, 96, 87, 97syl3anc 1184 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  < 
M  <->  ( w  /  N )  <  ( M  /  N ) ) )
9994, 98mpbid 202 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  <  ( M  /  N ) )
100 elfzo0 11171 . . . . 5  |-  ( ( w  /  N )  e.  ( 0..^ ( M  /  N ) )  <->  ( ( w  /  N )  e. 
NN0  /\  ( M  /  N )  e.  NN  /\  ( w  /  N
)  <  ( M  /  N ) ) )
10191, 92, 99, 100syl3anbrc 1138 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  ( 0..^ ( M  /  N ) ) )
10264oveq1d 6096 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  gcd  M )  /  N )  =  ( N  /  N ) )
103 simpl2 961 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  e.  NN )
104 simpl3 962 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  ||  M
)
105 gcddiv 13049 . . . . . 6  |-  ( ( ( w  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  NN )  /\  ( N  ||  w  /\  N  ||  M ) )  ->  ( (
w  gcd  M )  /  N )  =  ( ( w  /  N
)  gcd  ( M  /  N ) ) )
10666, 68, 103, 72, 104, 105syl32anc 1192 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  gcd  M )  /  N )  =  ( ( w  /  N
)  gcd  ( M  /  N ) ) )
10736, 38dividd 9788 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( N  /  N )  =  1 )
108107adantr 452 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( N  /  N )  =  1 )
109102, 106, 1083eqtr3d 2476 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  /  N )  gcd  ( M  /  N
) )  =  1 )
110 oveq1 6088 . . . . . 6  |-  ( y  =  ( w  /  N )  ->  (
y  gcd  ( M  /  N ) )  =  ( ( w  /  N )  gcd  ( M  /  N ) ) )
111110eqeq1d 2444 . . . . 5  |-  ( y  =  ( w  /  N )  ->  (
( y  gcd  ( M  /  N ) )  =  1  <->  ( (
w  /  N )  gcd  ( M  /  N ) )  =  1 ) )
112111, 4elrab2 3094 . . . 4  |-  ( ( w  /  N )  e.  A  <->  ( (
w  /  N )  e.  ( 0..^ ( M  /  N ) )  /\  ( ( w  /  N )  gcd  ( M  /  N ) )  =  1 ) )
113101, 109, 112sylanbrc 646 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  A
)
11463, 113sylan2b 462 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  w  e.  B )  ->  ( w  /  N
)  e.  A )
1155simplbi 447 . . . 4  |-  ( x  e.  A  ->  x  e.  ( 0..^ ( M  /  N ) ) )
11663simplbi 447 . . . 4  |-  ( w  e.  B  ->  w  e.  ( 0..^ M ) )
117115, 116anim12i 550 . . 3  |-  ( ( x  e.  A  /\  w  e.  B )  ->  ( x  e.  ( 0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )
11865ad2antll 710 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  w  e.  ZZ )
119118zcnd 10376 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  w  e.  CC )
12036adantr 452 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  N  e.  CC )
12138adantr 452 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  N  =/=  0
)
122119, 120, 121divcan1d 9791 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( ( w  /  N )  x.  N )  =  w )
123122eqcomd 2441 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  w  =  ( ( w  /  N
)  x.  N ) )
124 oveq1 6088 . . . . . 6  |-  ( x  =  ( w  /  N )  ->  (
x  x.  N )  =  ( ( w  /  N )  x.  N ) )
125124eqeq2d 2447 . . . . 5  |-  ( x  =  ( w  /  N )  ->  (
w  =  ( x  x.  N )  <->  w  =  ( ( w  /  N )  x.  N
) ) )
126123, 125syl5ibrcom 214 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( x  =  ( w  /  N
)  ->  w  =  ( x  x.  N
) ) )
12717ad2antrl 709 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  x  e.  ZZ )
128127zcnd 10376 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  x  e.  CC )
129128, 120, 121divcan4d 9796 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( ( x  x.  N )  /  N )  =  x )
130129eqcomd 2441 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  x  =  ( ( x  x.  N
)  /  N ) )
131 oveq1 6088 . . . . . 6  |-  ( w  =  ( x  x.  N )  ->  (
w  /  N )  =  ( ( x  x.  N )  /  N ) )
132131eqeq2d 2447 . . . . 5  |-  ( w  =  ( x  x.  N )  ->  (
x  =  ( w  /  N )  <->  x  =  ( ( x  x.  N )  /  N
) ) )
133130, 132syl5ibrcom 214 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( w  =  ( x  x.  N
)  ->  x  =  ( w  /  N
) ) )
134126, 133impbid 184 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( x  =  ( w  /  N
)  <->  w  =  (
x  x.  N ) ) )
135117, 134sylan2 461 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  A  /\  w  e.  B
) )  ->  (
x  =  ( w  /  N )  <->  w  =  ( x  x.  N
) ) )
1361, 60, 114, 135f1o2d 6296 1  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  F : A -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   {crab 2709   class class class wbr 4212    e. cmpt 4266   -1-1-onto->wf1o 5453  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    x. cmul 8995    < clt 9120    <_ cle 9121    / cdiv 9677   NNcn 10000   NN0cn0 10221   ZZcz 10282   ...cfz 11043  ..^cfzo 11135    || cdivides 12852    gcd cgcd 13006
This theorem is referenced by:  hashgcdeq  27494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-dvds 12853  df-gcd 13007
  Copyright terms: Public domain W3C validator