MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauscmp Unicode version

Theorem hauscmp 17385
Description: A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.)
Hypothesis
Ref Expression
hauscmp.1  |-  X  = 
U. J
Assertion
Ref Expression
hauscmp  |-  ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  ->  S  e.  ( Clsd `  J ) )

Proof of Theorem hauscmp
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 958 . 2  |-  ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  ->  S  C_  X )
2 hauscmp.1 . . . . . 6  |-  X  = 
U. J
3 eqid 2380 . . . . . 6  |-  { y  e.  J  |  E. w  e.  J  (
x  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( X  \  y
) ) }  =  { y  e.  J  |  E. w  e.  J  ( x  e.  w  /\  ( ( cls `  J
) `  w )  C_  ( X  \  y
) ) }
4 simpl1 960 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  x  e.  ( X  \  S ) )  ->  J  e.  Haus )
5 simpl2 961 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  x  e.  ( X  \  S ) )  ->  S  C_  X
)
6 simpl3 962 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  x  e.  ( X  \  S ) )  ->  ( Jt  S
)  e.  Comp )
7 simpr 448 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  x  e.  ( X  \  S ) )  ->  x  e.  ( X  \  S ) )
82, 3, 4, 5, 6, 7hauscmplem 17384 . . . . 5  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  x  e.  ( X  \  S ) )  ->  E. z  e.  J  ( x  e.  z  /\  (
( cls `  J
) `  z )  C_  ( X  \  S
) ) )
9 haustop 17310 . . . . . . . . . . 11  |-  ( J  e.  Haus  ->  J  e. 
Top )
1093ad2ant1 978 . . . . . . . . . 10  |-  ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  ->  J  e.  Top )
11 elssuni 3978 . . . . . . . . . . 11  |-  ( z  e.  J  ->  z  C_ 
U. J )
1211, 2syl6sseqr 3331 . . . . . . . . . 10  |-  ( z  e.  J  ->  z  C_  X )
132sscls 17036 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  z  C_  X )  -> 
z  C_  ( ( cls `  J ) `  z ) )
1410, 12, 13syl2an 464 . . . . . . . . 9  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  z  e.  J
)  ->  z  C_  ( ( cls `  J
) `  z )
)
15 sstr2 3291 . . . . . . . . 9  |-  ( z 
C_  ( ( cls `  J ) `  z
)  ->  ( (
( cls `  J
) `  z )  C_  ( X  \  S
)  ->  z  C_  ( X  \  S ) ) )
1614, 15syl 16 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  z  e.  J
)  ->  ( (
( cls `  J
) `  z )  C_  ( X  \  S
)  ->  z  C_  ( X  \  S ) ) )
1716anim2d 549 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  z  e.  J
)  ->  ( (
x  e.  z  /\  ( ( cls `  J
) `  z )  C_  ( X  \  S
) )  ->  (
x  e.  z  /\  z  C_  ( X  \  S ) ) ) )
1817reximdva 2754 . . . . . 6  |-  ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  ->  ( E. z  e.  J  ( x  e.  z  /\  ( ( cls `  J ) `
 z )  C_  ( X  \  S ) )  ->  E. z  e.  J  ( x  e.  z  /\  z  C_  ( X  \  S
) ) ) )
1918adantr 452 . . . . 5  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  x  e.  ( X  \  S ) )  ->  ( E. z  e.  J  (
x  e.  z  /\  ( ( cls `  J
) `  z )  C_  ( X  \  S
) )  ->  E. z  e.  J  ( x  e.  z  /\  z  C_  ( X  \  S
) ) ) )
208, 19mpd 15 . . . 4  |-  ( ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  /\  x  e.  ( X  \  S ) )  ->  E. z  e.  J  ( x  e.  z  /\  z  C_  ( X  \  S
) ) )
2120ralrimiva 2725 . . 3  |-  ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  ->  A. x  e.  ( X  \  S ) E. z  e.  J  ( x  e.  z  /\  z  C_  ( X 
\  S ) ) )
22 eltop2 16956 . . . 4  |-  ( J  e.  Top  ->  (
( X  \  S
)  e.  J  <->  A. x  e.  ( X  \  S
) E. z  e.  J  ( x  e.  z  /\  z  C_  ( X  \  S ) ) ) )
2310, 22syl 16 . . 3  |-  ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  ->  ( ( X  \  S )  e.  J  <->  A. x  e.  ( X 
\  S ) E. z  e.  J  ( x  e.  z  /\  z  C_  ( X  \  S ) ) ) )
2421, 23mpbird 224 . 2  |-  ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  ->  ( X  \  S
)  e.  J )
252iscld 17007 . . 3  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X 
\  S )  e.  J ) ) )
2610, 25syl 16 . 2  |-  ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  ->  ( S  e.  (
Clsd `  J )  <->  ( S  C_  X  /\  ( X  \  S )  e.  J ) ) )
271, 24, 26mpbir2and 889 1  |-  ( ( J  e.  Haus  /\  S  C_  X  /\  ( Jt  S )  e.  Comp )  ->  S  e.  ( Clsd `  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2642   E.wrex 2643   {crab 2646    \ cdif 3253    C_ wss 3256   U.cuni 3950   ` cfv 5387  (class class class)co 6013   ↾t crest 13568   Topctop 16874   Clsdccld 16996   clsccl 16998   Hauscha 17287   Compccmp 17364
This theorem is referenced by:  txkgen  17598  cmphaushmeo  17746  cnheibor  18844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-en 7039  df-dom 7040  df-fin 7042  df-fi 7344  df-rest 13570  df-topgen 13587  df-top 16879  df-bases 16881  df-topon 16882  df-cld 16999  df-cls 17001  df-haus 17294  df-cmp 17365
  Copyright terms: Public domain W3C validator