MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauseqlcld Structured version   Unicode version

Theorem hauseqlcld 17668
Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
hauseqlcld.k  |-  ( ph  ->  K  e.  Haus )
hauseqlcld.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
hauseqlcld.g  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
Assertion
Ref Expression
hauseqlcld  |-  ( ph  ->  dom  ( F  i^i  G )  e.  ( Clsd `  J ) )

Proof of Theorem hauseqlcld
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauseqlcld.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 eqid 2435 . . . . . . . . . . 11  |-  U. J  =  U. J
3 eqid 2435 . . . . . . . . . . 11  |-  U. K  =  U. K
42, 3cnf 17300 . . . . . . . . . 10  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
51, 4syl 16 . . . . . . . . 9  |-  ( ph  ->  F : U. J --> U. K )
65ffvelrnda 5862 . . . . . . . 8  |-  ( (
ph  /\  b  e.  U. J )  ->  ( F `  b )  e.  U. K )
76biantrud 494 . . . . . . 7  |-  ( (
ph  /\  b  e.  U. J )  ->  ( <. ( F `  b
) ,  ( G `
 b ) >.  e.  _I  <->  ( <. ( F `  b ) ,  ( G `  b ) >.  e.  _I  /\  ( F `  b
)  e.  U. K
) ) )
8 fvex 5734 . . . . . . . . 9  |-  ( G `
 b )  e. 
_V
98ideq 5017 . . . . . . . 8  |-  ( ( F `  b )  _I  ( G `  b )  <->  ( F `  b )  =  ( G `  b ) )
10 df-br 4205 . . . . . . . 8  |-  ( ( F `  b )  _I  ( G `  b )  <->  <. ( F `
 b ) ,  ( G `  b
) >.  e.  _I  )
119, 10bitr3i 243 . . . . . . 7  |-  ( ( F `  b )  =  ( G `  b )  <->  <. ( F `
 b ) ,  ( G `  b
) >.  e.  _I  )
128opelres 5143 . . . . . . 7  |-  ( <.
( F `  b
) ,  ( G `
 b ) >.  e.  (  _I  |`  U. K
)  <->  ( <. ( F `  b ) ,  ( G `  b ) >.  e.  _I  /\  ( F `  b
)  e.  U. K
) )
137, 11, 123bitr4g 280 . . . . . 6  |-  ( (
ph  /\  b  e.  U. J )  ->  (
( F `  b
)  =  ( G `
 b )  <->  <. ( F `
 b ) ,  ( G `  b
) >.  e.  (  _I  |`  U. K ) ) )
14 fveq2 5720 . . . . . . . . . 10  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
15 fveq2 5720 . . . . . . . . . 10  |-  ( a  =  b  ->  ( G `  a )  =  ( G `  b ) )
1614, 15opeq12d 3984 . . . . . . . . 9  |-  ( a  =  b  ->  <. ( F `  a ) ,  ( G `  a ) >.  =  <. ( F `  b ) ,  ( G `  b ) >. )
17 eqid 2435 . . . . . . . . 9  |-  ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
)  =  ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
)
18 opex 4419 . . . . . . . . 9  |-  <. ( F `  b ) ,  ( G `  b ) >.  e.  _V
1916, 17, 18fvmpt 5798 . . . . . . . 8  |-  ( b  e.  U. J  -> 
( ( a  e. 
U. J  |->  <. ( F `  a ) ,  ( G `  a ) >. ) `  b )  =  <. ( F `  b ) ,  ( G `  b ) >. )
2019adantl 453 . . . . . . 7  |-  ( (
ph  /\  b  e.  U. J )  ->  (
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) `  b )  =  <. ( F `  b ) ,  ( G `  b )
>. )
2120eleq1d 2501 . . . . . 6  |-  ( (
ph  /\  b  e.  U. J )  ->  (
( ( a  e. 
U. J  |->  <. ( F `  a ) ,  ( G `  a ) >. ) `  b )  e.  (  _I  |`  U. K )  <->  <. ( F `  b
) ,  ( G `
 b ) >.  e.  (  _I  |`  U. K
) ) )
2213, 21bitr4d 248 . . . . 5  |-  ( (
ph  /\  b  e.  U. J )  ->  (
( F `  b
)  =  ( G `
 b )  <->  ( (
a  e.  U. J  |-> 
<. ( F `  a
) ,  ( G `
 a ) >.
) `  b )  e.  (  _I  |`  U. K
) ) )
2322pm5.32da 623 . . . 4  |-  ( ph  ->  ( ( b  e. 
U. J  /\  ( F `  b )  =  ( G `  b ) )  <->  ( b  e.  U. J  /\  (
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) `  b )  e.  (  _I  |`  U. K
) ) ) )
24 ffn 5583 . . . . . . . 8  |-  ( F : U. J --> U. K  ->  F  Fn  U. J
)
255, 24syl 16 . . . . . . 7  |-  ( ph  ->  F  Fn  U. J
)
26 hauseqlcld.g . . . . . . . . 9  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
272, 3cnf 17300 . . . . . . . . 9  |-  ( G  e.  ( J  Cn  K )  ->  G : U. J --> U. K
)
2826, 27syl 16 . . . . . . . 8  |-  ( ph  ->  G : U. J --> U. K )
29 ffn 5583 . . . . . . . 8  |-  ( G : U. J --> U. K  ->  G  Fn  U. J
)
3028, 29syl 16 . . . . . . 7  |-  ( ph  ->  G  Fn  U. J
)
31 fndmin 5829 . . . . . . 7  |-  ( ( F  Fn  U. J  /\  G  Fn  U. J
)  ->  dom  ( F  i^i  G )  =  { b  e.  U. J  |  ( F `  b )  =  ( G `  b ) } )
3225, 30, 31syl2anc 643 . . . . . 6  |-  ( ph  ->  dom  ( F  i^i  G )  =  { b  e.  U. J  | 
( F `  b
)  =  ( G `
 b ) } )
3332eleq2d 2502 . . . . 5  |-  ( ph  ->  ( b  e.  dom  ( F  i^i  G )  <-> 
b  e.  { b  e.  U. J  | 
( F `  b
)  =  ( G `
 b ) } ) )
34 rabid 2876 . . . . 5  |-  ( b  e.  { b  e. 
U. J  |  ( F `  b )  =  ( G `  b ) }  <->  ( b  e.  U. J  /\  ( F `  b )  =  ( G `  b ) ) )
3533, 34syl6bb 253 . . . 4  |-  ( ph  ->  ( b  e.  dom  ( F  i^i  G )  <-> 
( b  e.  U. J  /\  ( F `  b )  =  ( G `  b ) ) ) )
36 opex 4419 . . . . . 6  |-  <. ( F `  a ) ,  ( G `  a ) >.  e.  _V
3736, 17fnmpti 5565 . . . . 5  |-  ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
)  Fn  U. J
38 elpreima 5842 . . . . 5  |-  ( ( a  e.  U. J  |-> 
<. ( F `  a
) ,  ( G `
 a ) >.
)  Fn  U. J  ->  ( b  e.  ( `' ( a  e. 
U. J  |->  <. ( F `  a ) ,  ( G `  a ) >. ) " (  _I  |`  U. K
) )  <->  ( b  e.  U. J  /\  (
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) `  b )  e.  (  _I  |`  U. K
) ) ) )
3937, 38mp1i 12 . . . 4  |-  ( ph  ->  ( b  e.  ( `' ( a  e. 
U. J  |->  <. ( F `  a ) ,  ( G `  a ) >. ) " (  _I  |`  U. K
) )  <->  ( b  e.  U. J  /\  (
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) `  b )  e.  (  _I  |`  U. K
) ) ) )
4023, 35, 393bitr4d 277 . . 3  |-  ( ph  ->  ( b  e.  dom  ( F  i^i  G )  <-> 
b  e.  ( `' ( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) " (  _I  |`  U. K ) ) ) )
4140eqrdv 2433 . 2  |-  ( ph  ->  dom  ( F  i^i  G )  =  ( `' ( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. ) " (  _I  |`  U. K ) ) )
422, 17txcnmpt 17646 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( J  Cn  K ) )  -> 
( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. )  e.  ( J  Cn  ( K  tX  K ) ) )
431, 26, 42syl2anc 643 . . 3  |-  ( ph  ->  ( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. )  e.  ( J  Cn  ( K  tX  K ) ) )
44 hauseqlcld.k . . . 4  |-  ( ph  ->  K  e.  Haus )
453hausdiag 17667 . . . . 5  |-  ( K  e.  Haus  <->  ( K  e. 
Top  /\  (  _I  |` 
U. K )  e.  ( Clsd `  ( K  tX  K ) ) ) )
4645simprbi 451 . . . 4  |-  ( K  e.  Haus  ->  (  _I  |`  U. K )  e.  ( Clsd `  ( K  tX  K ) ) )
4744, 46syl 16 . . 3  |-  ( ph  ->  (  _I  |`  U. K
)  e.  ( Clsd `  ( K  tX  K
) ) )
48 cnclima 17322 . . 3  |-  ( ( ( a  e.  U. J  |->  <. ( F `  a ) ,  ( G `  a )
>. )  e.  ( J  Cn  ( K  tX  K ) )  /\  (  _I  |`  U. K
)  e.  ( Clsd `  ( K  tX  K
) ) )  -> 
( `' ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
) " (  _I  |`  U. K ) )  e.  ( Clsd `  J
) )
4943, 47, 48syl2anc 643 . 2  |-  ( ph  ->  ( `' ( a  e.  U. J  |->  <.
( F `  a
) ,  ( G `
 a ) >.
) " (  _I  |`  U. K ) )  e.  ( Clsd `  J
) )
5041, 49eqeltrd 2509 1  |-  ( ph  ->  dom  ( F  i^i  G )  e.  ( Clsd `  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701    i^i cin 3311   <.cop 3809   U.cuni 4007   class class class wbr 4204    e. cmpt 4258    _I cid 4485   `'ccnv 4869   dom cdm 4870    |` cres 4872   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   Topctop 16948   Clsdccld 17070    Cn ccn 17278   Hauscha 17362    tX ctx 17582
This theorem is referenced by:  hauseqcn  24283  hausgraph  27463
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-map 7012  df-topgen 13657  df-top 16953  df-bases 16955  df-topon 16956  df-cld 17073  df-cn 17281  df-haus 17369  df-tx 17584
  Copyright terms: Public domain W3C validator