MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausllycmp Unicode version

Theorem hausllycmp 17220
Description: A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
hausllycmp  |-  ( ( J  e.  Haus  /\  J  e.  Comp )  ->  J  e. 𝑛Locally  Comp )

Proof of Theorem hausllycmp
Dummy variables  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 17059 . . 3  |-  ( J  e.  Haus  ->  J  e. 
Top )
21adantr 451 . 2  |-  ( ( J  e.  Haus  /\  J  e.  Comp )  ->  J  e.  Top )
3 eqid 2283 . . . . . 6  |-  U. J  =  U. J
4 eqid 2283 . . . . . 6  |-  { z  e.  J  |  E. v  e.  J  (
y  e.  v  /\  ( ( cls `  J
) `  v )  C_  ( U. J  \ 
z ) ) }  =  { z  e.  J  |  E. v  e.  J  ( y  e.  v  /\  (
( cls `  J
) `  v )  C_  ( U. J  \ 
z ) ) }
5 simpll 730 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  J  e.  Haus )
6 difss 3303 . . . . . . 7  |-  ( U. J  \  x )  C_  U. J
76a1i 10 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( U. J  \  x
)  C_  U. J )
8 simplr 731 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  J  e.  Comp )
91ad2antrr 706 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  J  e.  Top )
10 simprl 732 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  x  e.  J )
113opncld 16770 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( U. J  \  x )  e.  (
Clsd `  J )
)
129, 10, 11syl2anc 642 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( U. J  \  x
)  e.  ( Clsd `  J ) )
13 cmpcld 17129 . . . . . . 7  |-  ( ( J  e.  Comp  /\  ( U. J  \  x
)  e.  ( Clsd `  J ) )  -> 
( Jt  ( U. J  \  x ) )  e. 
Comp )
148, 12, 13syl2anc 642 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( Jt  ( U. J  \  x
) )  e.  Comp )
15 simprr 733 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  y  e.  x )
16 elssuni 3855 . . . . . . . . 9  |-  ( x  e.  J  ->  x  C_ 
U. J )
1716ad2antrl 708 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  x  C_ 
U. J )
18 dfss4 3403 . . . . . . . 8  |-  ( x 
C_  U. J  <->  ( U. J  \  ( U. J  \  x ) )  =  x )
1917, 18sylib 188 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( U. J  \  ( U. J  \  x
) )  =  x )
2015, 19eleqtrrd 2360 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  y  e.  ( U. J  \ 
( U. J  \  x ) ) )
213, 4, 5, 7, 14, 20hauscmplem 17133 . . . . 5  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  E. u  e.  J  ( y  e.  u  /\  (
( cls `  J
) `  u )  C_  ( U. J  \ 
( U. J  \  x ) ) ) )
2219sseq2d 3206 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  (
( ( cls `  J
) `  u )  C_  ( U. J  \ 
( U. J  \  x ) )  <->  ( ( cls `  J ) `  u )  C_  x
) )
2322anbi2d 684 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  (
( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  ( U. J  \ 
( U. J  \  x ) ) )  <-> 
( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )
2423rexbidv 2564 . . . . 5  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( E. u  e.  J  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  ( U. J  \ 
( U. J  \  x ) ) )  <->  E. u  e.  J  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )
2521, 24mpbid 201 . . . 4  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  E. u  e.  J  ( y  e.  u  /\  (
( cls `  J
) `  u )  C_  x ) )
269adantr 451 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  J  e.  Top )
27 simprl 732 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  u  e.  J
)
28 simprrl 740 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  y  e.  u
)
29 opnneip 16856 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  u  e.  J  /\  y  e.  u )  ->  u  e.  ( ( nei `  J ) `
 { y } ) )
3026, 27, 28, 29syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  u  e.  ( ( nei `  J
) `  { y } ) )
31 elssuni 3855 . . . . . . . . . . 11  |-  ( u  e.  J  ->  u  C_ 
U. J )
3231ad2antrl 708 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  u  C_  U. J
)
333sscls 16793 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  u  C_  (
( cls `  J
) `  u )
)
3426, 32, 33syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  u  C_  (
( cls `  J
) `  u )
)
353clsss3 16796 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  ( ( cls `  J ) `  u
)  C_  U. J )
3626, 32, 35syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  C_  U. J )
373ssnei2 16853 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  u  e.  ( ( nei `  J ) `
 { y } ) )  /\  (
u  C_  ( ( cls `  J ) `  u )  /\  (
( cls `  J
) `  u )  C_ 
U. J ) )  ->  ( ( cls `  J ) `  u
)  e.  ( ( nei `  J ) `
 { y } ) )
3826, 30, 34, 36, 37syl22anc 1183 . . . . . . . 8  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  e.  ( ( nei `  J ) `
 { y } ) )
39 simprrr 741 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  C_  x )
40 vex 2791 . . . . . . . . . 10  |-  x  e. 
_V
4140elpw2 4175 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  u )  e.  ~P x  <->  ( ( cls `  J ) `  u )  C_  x
)
4239, 41sylibr 203 . . . . . . . 8  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  e.  ~P x
)
43 elin 3358 . . . . . . . 8  |-  ( ( ( cls `  J
) `  u )  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x )  <->  ( (
( cls `  J
) `  u )  e.  ( ( nei `  J
) `  { y } )  /\  (
( cls `  J
) `  u )  e.  ~P x ) )
4438, 42, 43sylanbrc 645 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) )
458adantr 451 . . . . . . . 8  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  J  e.  Comp )
463clscld 16784 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  ( ( cls `  J ) `  u
)  e.  ( Clsd `  J ) )
4726, 32, 46syl2anc 642 . . . . . . . 8  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( ( cls `  J ) `  u
)  e.  ( Clsd `  J ) )
48 cmpcld 17129 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  (
( cls `  J
) `  u )  e.  ( Clsd `  J
) )  ->  ( Jt  ( ( cls `  J
) `  u )
)  e.  Comp )
4945, 47, 48syl2anc 642 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  ( Jt  ( ( cls `  J ) `
 u ) )  e.  Comp )
50 oveq2 5866 . . . . . . . . 9  |-  ( v  =  ( ( cls `  J ) `  u
)  ->  ( Jt  v
)  =  ( Jt  ( ( cls `  J
) `  u )
) )
5150eleq1d 2349 . . . . . . . 8  |-  ( v  =  ( ( cls `  J ) `  u
)  ->  ( ( Jt  v )  e.  Comp  <->  ( Jt  ( ( cls `  J
) `  u )
)  e.  Comp )
)
5251rspcev 2884 . . . . . . 7  |-  ( ( ( ( cls `  J
) `  u )  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x )  /\  ( Jt  ( ( cls `  J ) `  u
) )  e.  Comp )  ->  E. v  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  v )  e.  Comp )
5344, 49, 52syl2anc 642 . . . . . 6  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  ( u  e.  J  /\  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x ) ) )  ->  E. v  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  v )  e.  Comp )
5453expr 598 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x ) )  /\  u  e.  J )  ->  ( ( y  e.  u  /\  ( ( cls `  J ) `
 u )  C_  x )  ->  E. v  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  v )  e.  Comp ) )
5554rexlimdva 2667 . . . 4  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( E. u  e.  J  ( y  e.  u  /\  ( ( cls `  J
) `  u )  C_  x )  ->  E. v  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  v )  e.  Comp ) )
5625, 55mpd 14 . . 3  |-  ( ( ( J  e.  Haus  /\  J  e.  Comp )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  E. v  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  v )  e.  Comp )
5756ralrimivva 2635 . 2  |-  ( ( J  e.  Haus  /\  J  e.  Comp )  ->  A. x  e.  J  A. y  e.  x  E. v  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  v )  e.  Comp )
58 isnlly 17195 . 2  |-  ( J  e. 𝑛Locally 
Comp 
<->  ( J  e.  Top  /\ 
A. x  e.  J  A. y  e.  x  E. v  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  v )  e.  Comp )
)
592, 57, 58sylanbrc 645 1  |-  ( ( J  e.  Haus  /\  J  e.  Comp )  ->  J  e. 𝑛Locally  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547    \ cdif 3149    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {csn 3640   U.cuni 3827   ` cfv 5255  (class class class)co 5858   ↾t crest 13325   Topctop 16631   Clsdccld 16753   clsccl 16755   neicnei 16834   Hauscha 17036   Compccmp 17113  𝑛Locally cnlly 17191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867  df-fi 7165  df-rest 13327  df-topgen 13344  df-top 16636  df-bases 16638  df-topon 16639  df-cld 16756  df-cls 16758  df-nei 16835  df-haus 17043  df-cmp 17114  df-nlly 17193
  Copyright terms: Public domain W3C validator