Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausmapdom Structured version   Unicode version

Theorem hausmapdom 17568
 Description: If is a first-countable Hausdorff space, then the cardinality of the closure of a set is bounded by to the power . In particular, a first-countable Hausdorff space with a dense subset has cardinality at most , and a separable first-countable Hausdorff space has cardinality at most . (Compare hauspwpwdom 18025 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1
Assertion
Ref Expression
hausmapdom

Proof of Theorem hausmapdom
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauspwdom.1 . . . . . . . 8
211stcelcls 17529 . . . . . . 7
323adant1 976 . . . . . 6
4 uniexg 4709 . . . . . . . . . . . 12
543ad2ant1 979 . . . . . . . . . . 11
61, 5syl5eqel 2522 . . . . . . . . . 10
7 simp3 960 . . . . . . . . . 10
86, 7ssexd 4353 . . . . . . . . 9
9 nnex 10011 . . . . . . . . 9
10 elmapg 7034 . . . . . . . . 9
118, 9, 10sylancl 645 . . . . . . . 8
1211anbi1d 687 . . . . . . 7
1312exbidv 1637 . . . . . 6
143, 13bitr4d 249 . . . . 5
15 df-rex 2713 . . . . 5
1614, 15syl6bbr 256 . . . 4
17 vex 2961 . . . . 5
1817elima 5211 . . . 4
1916, 18syl6bbr 256 . . 3
2019eqrdv 2436 . 2
21 ovex 6109 . . 3
22 lmfun 17450 . . . 4
23223ad2ant1 979 . . 3
24 imadomg 8417 . . 3
2521, 23, 24mpsyl 62 . 2
2620, 25eqbrtrd 4235 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   w3a 937  wex 1551   wceq 1653   wcel 1726  wrex 2708  cvv 2958   wss 3322  cuni 4017   class class class wbr 4215  cima 4884   wfun 5451  wf 5453  cfv 5457  (class class class)co 6084   cmap 7021   cdom 7110  cn 10005  ccl 17087  clm 17295  cha 17377  c1stc 17505 This theorem is referenced by:  hauspwdom  17569 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cc 8320  ax-ac2 8348  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-card 7831  df-acn 7834  df-ac 8002  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-top 16968  df-topon 16971  df-cld 17088  df-ntr 17089  df-cls 17090  df-lm 17298  df-haus 17384  df-1stc 17507
 Copyright terms: Public domain W3C validator