MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausmapdom Structured version   Unicode version

Theorem hausmapdom 17568
Description: If  X is a first-countable Hausdorff space, then the cardinality of the closure of a set  A is bounded by  NN to the power  A. In particular, a first-countable Hausdorff space with a dense subset  A has cardinality at most  A ^ NN, and a separable first-countable Hausdorff space has cardinality at most  ~P NN. (Compare hauspwpwdom 18025 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1  |-  X  = 
U. J
Assertion
Ref Expression
hausmapdom  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( cls `  J ) `  A )  ~<_  ( A  ^m  NN ) )

Proof of Theorem hausmapdom
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauspwdom.1 . . . . . . . 8  |-  X  = 
U. J
211stcelcls 17529 . . . . . . 7  |-  ( ( J  e.  1stc  /\  A  C_  X )  ->  (
x  e.  ( ( cls `  J ) `
 A )  <->  E. f
( f : NN --> A  /\  f ( ~~> t `  J ) x ) ) )
323adant1 976 . . . . . 6  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  E. f ( f : NN --> A  /\  f
( ~~> t `  J
) x ) ) )
4 uniexg 4709 . . . . . . . . . . . 12  |-  ( J  e.  Haus  ->  U. J  e.  _V )
543ad2ant1 979 . . . . . . . . . . 11  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  U. J  e. 
_V )
61, 5syl5eqel 2522 . . . . . . . . . 10  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  X  e.  _V )
7 simp3 960 . . . . . . . . . 10  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  A  C_  X
)
86, 7ssexd 4353 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  A  e.  _V )
9 nnex 10011 . . . . . . . . 9  |-  NN  e.  _V
10 elmapg 7034 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  NN  e.  _V )  -> 
( f  e.  ( A  ^m  NN )  <-> 
f : NN --> A ) )
118, 9, 10sylancl 645 . . . . . . . 8  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( f  e.  ( A  ^m  NN ) 
<->  f : NN --> A ) )
1211anbi1d 687 . . . . . . 7  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( (
f  e.  ( A  ^m  NN )  /\  f ( ~~> t `  J ) x )  <-> 
( f : NN --> A  /\  f ( ~~> t `  J ) x ) ) )
1312exbidv 1637 . . . . . 6  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( E. f ( f  e.  ( A  ^m  NN )  /\  f ( ~~> t `  J ) x )  <->  E. f ( f : NN --> A  /\  f
( ~~> t `  J
) x ) ) )
143, 13bitr4d 249 . . . . 5  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  E. f ( f  e.  ( A  ^m  NN )  /\  f ( ~~> t `  J ) x ) ) )
15 df-rex 2713 . . . . 5  |-  ( E. f  e.  ( A  ^m  NN ) f ( ~~> t `  J
) x  <->  E. f
( f  e.  ( A  ^m  NN )  /\  f ( ~~> t `  J ) x ) )
1614, 15syl6bbr 256 . . . 4  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  E. f  e.  ( A  ^m  NN ) f ( ~~> t `  J
) x ) )
17 vex 2961 . . . . 5  |-  x  e. 
_V
1817elima 5211 . . . 4  |-  ( x  e.  ( ( ~~> t `  J ) " ( A  ^m  NN ) )  <->  E. f  e.  ( A  ^m  NN ) f ( ~~> t `  J
) x )
1916, 18syl6bbr 256 . . 3  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  x  e.  ( ( ~~> t `  J ) " ( A  ^m  NN ) ) ) )
2019eqrdv 2436 . 2  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( cls `  J ) `  A )  =  ( ( ~~> t `  J
) " ( A  ^m  NN ) ) )
21 ovex 6109 . . 3  |-  ( A  ^m  NN )  e. 
_V
22 lmfun 17450 . . . 4  |-  ( J  e.  Haus  ->  Fun  ( ~~> t `  J )
)
23223ad2ant1 979 . . 3  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  Fun  ( ~~> t `  J ) )
24 imadomg 8417 . . 3  |-  ( ( A  ^m  NN )  e.  _V  ->  ( Fun  ( ~~> t `  J
)  ->  ( ( ~~> t `  J ) " ( A  ^m  NN ) )  ~<_  ( A  ^m  NN ) ) )
2521, 23, 24mpsyl 62 . 2  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( ~~> t `  J ) " ( A  ^m  NN ) )  ~<_  ( A  ^m  NN ) )
2620, 25eqbrtrd 4235 1  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( cls `  J ) `  A )  ~<_  ( A  ^m  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726   E.wrex 2708   _Vcvv 2958    C_ wss 3322   U.cuni 4017   class class class wbr 4215   "cima 4884   Fun wfun 5451   -->wf 5453   ` cfv 5457  (class class class)co 6084    ^m cmap 7021    ~<_ cdom 7110   NNcn 10005   clsccl 17087   ~~> tclm 17295   Hauscha 17377   1stcc1stc 17505
This theorem is referenced by:  hauspwdom  17569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cc 8320  ax-ac2 8348  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-card 7831  df-acn 7834  df-ac 8002  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-top 16968  df-topon 16971  df-cld 17088  df-ntr 17089  df-cls 17090  df-lm 17298  df-haus 17384  df-1stc 17507
  Copyright terms: Public domain W3C validator