MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausnei Unicode version

Theorem hausnei 17162
Description: Neighborhood property of a Hausdorff space. (Contributed by NM, 8-Mar-2007.)
Hypothesis
Ref Expression
ist0.1  |-  X  = 
U. J
Assertion
Ref Expression
hausnei  |-  ( ( J  e.  Haus  /\  ( P  e.  X  /\  Q  e.  X  /\  P  =/=  Q ) )  ->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  Q  e.  m  /\  ( n  i^i  m
)  =  (/) ) )
Distinct variable groups:    m, n, J    P, m, n    Q, m, n
Allowed substitution hints:    X( m, n)

Proof of Theorem hausnei
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ist0.1 . . . . . . 7  |-  X  = 
U. J
21ishaus 17156 . . . . . 6  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) ) )
32simprbi 450 . . . . 5  |-  ( J  e.  Haus  ->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) )
4 neeq1 2529 . . . . . . 7  |-  ( x  =  P  ->  (
x  =/=  y  <->  P  =/=  y ) )
5 eleq1 2418 . . . . . . . . 9  |-  ( x  =  P  ->  (
x  e.  n  <->  P  e.  n ) )
653anbi1d 1256 . . . . . . . 8  |-  ( x  =  P  ->  (
( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  ( P  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) )
762rexbidv 2662 . . . . . . 7  |-  ( x  =  P  ->  ( E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) )
84, 7imbi12d 311 . . . . . 6  |-  ( x  =  P  ->  (
( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) )  <-> 
( P  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
9 neeq2 2530 . . . . . . 7  |-  ( y  =  Q  ->  ( P  =/=  y  <->  P  =/=  Q ) )
10 eleq1 2418 . . . . . . . . 9  |-  ( y  =  Q  ->  (
y  e.  m  <->  Q  e.  m ) )
11103anbi2d 1257 . . . . . . . 8  |-  ( y  =  Q  ->  (
( P  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  ( P  e.  n  /\  Q  e.  m  /\  ( n  i^i  m )  =  (/) ) ) )
12112rexbidv 2662 . . . . . . 7  |-  ( y  =  Q  ->  ( E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  Q  e.  m  /\  ( n  i^i  m )  =  (/) ) ) )
139, 12imbi12d 311 . . . . . 6  |-  ( y  =  Q  ->  (
( P  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  y  e.  m  /\  ( n  i^i  m
)  =  (/) ) )  <-> 
( P  =/=  Q  ->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  Q  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
148, 13rspc2v 2966 . . . . 5  |-  ( ( P  e.  X  /\  Q  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. n  e.  J  E. m  e.  J  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) )  -> 
( P  =/=  Q  ->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  Q  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
153, 14syl5 28 . . . 4  |-  ( ( P  e.  X  /\  Q  e.  X )  ->  ( J  e.  Haus  -> 
( P  =/=  Q  ->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  Q  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) )
1615ex 423 . . 3  |-  ( P  e.  X  ->  ( Q  e.  X  ->  ( J  e.  Haus  ->  ( P  =/=  Q  ->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  Q  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) ) )
1716com3r 73 . 2  |-  ( J  e.  Haus  ->  ( P  e.  X  ->  ( Q  e.  X  ->  ( P  =/=  Q  ->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  Q  e.  m  /\  ( n  i^i  m
)  =  (/) ) ) ) ) )
18173imp2 1166 1  |-  ( ( J  e.  Haus  /\  ( P  e.  X  /\  Q  e.  X  /\  P  =/=  Q ) )  ->  E. n  e.  J  E. m  e.  J  ( P  e.  n  /\  Q  e.  m  /\  ( n  i^i  m
)  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   E.wrex 2620    i^i cin 3227   (/)c0 3531   U.cuni 3908   Topctop 16737   Hauscha 17142
This theorem is referenced by:  haust1  17186  cnhaus  17188  lmmo  17214  hauscmplem  17239  pthaus  17438  txhaus  17447  xkohaus  17453  hausflimi  17777  hauspwpwf1  17784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-uni 3909  df-haus 17149
  Copyright terms: Public domain W3C validator