MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausnei2 Unicode version

Theorem hausnei2 17340
Description: The Hausdorff condition still holds if one considers general neighborhoods instead of open sets. (Contributed by Jeff Hankins, 5-Sep-2009.)
Assertion
Ref Expression
hausnei2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Haus  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
Distinct variable groups:    x, y    v, u, x, y, J   
u, X, v, x, y

Proof of Theorem hausnei2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishaus2 17338 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Haus  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
2 topontop 16915 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3 simp1 957 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  ->  J  e.  Top )
43adantr 452 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  J  e.  Top )
5 simp2 958 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  ->  m  e.  J )
65adantr 452 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  m  e.  J
)
7 simp1 957 . . . . . . . . . . . 12  |-  ( ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  x  e.  m )
87adantl 453 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  x  e.  m
)
9 opnneip 17107 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  m  e.  J  /\  x  e.  m )  ->  m  e.  ( ( nei `  J ) `
 { x }
) )
104, 6, 8, 9syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  m  e.  ( ( nei `  J
) `  { x } ) )
11 simp3 959 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  ->  n  e.  J )
1211adantr 452 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  n  e.  J
)
13 simp2 958 . . . . . . . . . . . 12  |-  ( ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  -> 
y  e.  n )
1413adantl 453 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  y  e.  n
)
15 opnneip 17107 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  n  e.  J  /\  y  e.  n )  ->  n  e.  ( ( nei `  J ) `
 { y } ) )
164, 12, 14, 15syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  n  e.  ( ( nei `  J
) `  { y } ) )
17 simp3 959 . . . . . . . . . . 11  |-  ( ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  -> 
( m  i^i  n
)  =  (/) )
1817adantl 453 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  ( m  i^i  n )  =  (/) )
19 ineq1 3479 . . . . . . . . . . . 12  |-  ( u  =  m  ->  (
u  i^i  v )  =  ( m  i^i  v ) )
2019eqeq1d 2396 . . . . . . . . . . 11  |-  ( u  =  m  ->  (
( u  i^i  v
)  =  (/)  <->  ( m  i^i  v )  =  (/) ) )
21 ineq2 3480 . . . . . . . . . . . 12  |-  ( v  =  n  ->  (
m  i^i  v )  =  ( m  i^i  n ) )
2221eqeq1d 2396 . . . . . . . . . . 11  |-  ( v  =  n  ->  (
( m  i^i  v
)  =  (/)  <->  ( m  i^i  n )  =  (/) ) )
2320, 22rspc2ev 3004 . . . . . . . . . 10  |-  ( ( m  e.  ( ( nei `  J ) `
 { x }
)  /\  n  e.  ( ( nei `  J
) `  { y } )  /\  (
m  i^i  n )  =  (/) )  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) )
2410, 16, 18, 23syl3anc 1184 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  /\  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) )
2524ex 424 . . . . . . . 8  |-  ( ( J  e.  Top  /\  m  e.  J  /\  n  e.  J )  ->  ( ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n )  =  (/) )  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) )
26253expib 1156 . . . . . . 7  |-  ( J  e.  Top  ->  (
( m  e.  J  /\  n  e.  J
)  ->  ( (
x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  E. u  e.  (
( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
2726rexlimdvv 2780 . . . . . 6  |-  ( J  e.  Top  ->  ( E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  E. u  e.  (
( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) )
28 neii2 17096 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  u  e.  ( ( nei `  J ) `  { x } ) )  ->  E. m  e.  J  ( {
x }  C_  m  /\  m  C_  u ) )
2928ex 424 . . . . . . . 8  |-  ( J  e.  Top  ->  (
u  e.  ( ( nei `  J ) `
 { x }
)  ->  E. m  e.  J  ( {
x }  C_  m  /\  m  C_  u ) ) )
30 neii2 17096 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  v  e.  ( ( nei `  J ) `  { y } ) )  ->  E. n  e.  J  ( {
y }  C_  n  /\  n  C_  v ) )
3130ex 424 . . . . . . . 8  |-  ( J  e.  Top  ->  (
v  e.  ( ( nei `  J ) `
 { y } )  ->  E. n  e.  J  ( {
y }  C_  n  /\  n  C_  v ) ) )
32 vex 2903 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
3332snss 3870 . . . . . . . . . . . . . 14  |-  ( x  e.  m  <->  { x }  C_  m )
3433anbi1i 677 . . . . . . . . . . . . 13  |-  ( ( x  e.  m  /\  m  C_  u )  <->  ( {
x }  C_  m  /\  m  C_  u ) )
35 vex 2903 . . . . . . . . . . . . . . . . . . . . . . 23  |-  y  e. 
_V
3635snss 3870 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  n  <->  { y }  C_  n )
3736anbi1i 677 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  n  /\  n  C_  v )  <->  ( {
y }  C_  n  /\  n  C_  v ) )
38 simp1l 981 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v )  /\  (
u  i^i  v )  =  (/) )  ->  x  e.  m )
39 simp2l 983 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v )  /\  (
u  i^i  v )  =  (/) )  ->  y  e.  n )
40 ss2in 3512 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( m  C_  u  /\  n  C_  v )  -> 
( m  i^i  n
)  C_  ( u  i^i  v ) )
41 ssn0 3604 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( m  i^i  n
)  C_  ( u  i^i  v )  /\  (
m  i^i  n )  =/=  (/) )  ->  (
u  i^i  v )  =/=  (/) )
4241ex 424 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( m  i^i  n ) 
C_  ( u  i^i  v )  ->  (
( m  i^i  n
)  =/=  (/)  ->  (
u  i^i  v )  =/=  (/) ) )
4342necon4d 2614 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( m  i^i  n ) 
C_  ( u  i^i  v )  ->  (
( u  i^i  v
)  =  (/)  ->  (
m  i^i  n )  =  (/) ) )
4440, 43syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( m  C_  u  /\  n  C_  v )  -> 
( ( u  i^i  v )  =  (/)  ->  ( m  i^i  n
)  =  (/) ) )
4544ad2ant2l 727 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v ) )  -> 
( ( u  i^i  v )  =  (/)  ->  ( m  i^i  n
)  =  (/) ) )
46453impia 1150 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v )  /\  (
u  i^i  v )  =  (/) )  ->  (
m  i^i  n )  =  (/) )
4738, 39, 463jca 1134 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  m  /\  m  C_  u )  /\  ( y  e.  n  /\  n  C_  v )  /\  (
u  i^i  v )  =  (/) )  ->  (
x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )
48473exp 1152 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  m  /\  m  C_  u )  -> 
( ( y  e.  n  /\  n  C_  v )  ->  (
( u  i^i  v
)  =  (/)  ->  (
x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
4937, 48syl5bir 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  m  /\  m  C_  u )  -> 
( ( { y }  C_  n  /\  n  C_  v )  -> 
( ( u  i^i  v )  =  (/)  ->  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
5049com3r 75 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  i^i  v )  =  (/)  ->  ( ( x  e.  m  /\  m  C_  u )  -> 
( ( { y }  C_  n  /\  n  C_  v )  -> 
( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
5150imp 419 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( u  i^i  v
)  =  (/)  /\  (
x  e.  m  /\  m  C_  u ) )  ->  ( ( { y }  C_  n  /\  n  C_  v )  ->  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n )  =  (/) ) ) )
52513adant1 975 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  (
x  e.  m  /\  m  C_  u ) )  ->  ( ( { y }  C_  n  /\  n  C_  v )  ->  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n )  =  (/) ) ) )
5352reximdv 2761 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  (
x  e.  m  /\  m  C_  u ) )  ->  ( E. n  e.  J  ( {
y }  C_  n  /\  n  C_  v )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
54533exp 1152 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  (
( u  i^i  v
)  =  (/)  ->  (
( x  e.  m  /\  m  C_  u )  ->  ( E. n  e.  J  ( {
y }  C_  n  /\  n  C_  v )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) ) )
5554com34 79 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  (
( u  i^i  v
)  =  (/)  ->  ( E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
)  ->  ( (
x  e.  m  /\  m  C_  u )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) ) )
56553imp 1147 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
) )  ->  (
( x  e.  m  /\  m  C_  u )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
5734, 56syl5bir 210 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
) )  ->  (
( { x }  C_  m  /\  m  C_  u )  ->  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
5857reximdv 2761 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  ( u  i^i  v
)  =  (/)  /\  E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
) )  ->  ( E. m  e.  J  ( { x }  C_  m  /\  m  C_  u
)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
59583exp 1152 . . . . . . . . . 10  |-  ( J  e.  Top  ->  (
( u  i^i  v
)  =  (/)  ->  ( E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
)  ->  ( E. m  e.  J  ( { x }  C_  m  /\  m  C_  u
)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) ) )
6059com24 83 . . . . . . . . 9  |-  ( J  e.  Top  ->  ( E. m  e.  J  ( { x }  C_  m  /\  m  C_  u
)  ->  ( E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
)  ->  ( (
u  i^i  v )  =  (/)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) ) )
6160imp3a 421 . . . . . . . 8  |-  ( J  e.  Top  ->  (
( E. m  e.  J  ( { x }  C_  m  /\  m  C_  u )  /\  E. n  e.  J  ( { y }  C_  n  /\  n  C_  v
) )  ->  (
( u  i^i  v
)  =  (/)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
6229, 31, 61syl2and 470 . . . . . . 7  |-  ( J  e.  Top  ->  (
( u  e.  ( ( nei `  J
) `  { x } )  /\  v  e.  ( ( nei `  J
) `  { y } ) )  -> 
( ( u  i^i  v )  =  (/)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
6362rexlimdvv 2780 . . . . . 6  |-  ( J  e.  Top  ->  ( E. u  e.  (
( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/)  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
6427, 63impbid 184 . . . . 5  |-  ( J  e.  Top  ->  ( E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) )
6564imbi2d 308 . . . 4  |-  ( J  e.  Top  ->  (
( x  =/=  y  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  <-> 
( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
66652ralbidv 2692 . . 3  |-  ( J  e.  Top  ->  ( A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
672, 66syl 16 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A. x  e.  X  A. y  e.  X  (
x  =/=  y  ->  E. m  e.  J  E. n  e.  J  ( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) )  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
681, 67bitrd 245 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Haus  <->  A. x  e.  X  A. y  e.  X  ( x  =/=  y  ->  E. u  e.  ( ( nei `  J
) `  { x } ) E. v  e.  ( ( nei `  J
) `  { y } ) ( u  i^i  v )  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651    i^i cin 3263    C_ wss 3264   (/)c0 3572   {csn 3758   ` cfv 5395   Topctop 16882  TopOnctopon 16883   neicnei 17085   Hauscha 17295
This theorem is referenced by:  hausflim  17935
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-top 16887  df-topon 16890  df-nei 17086  df-haus 17302
  Copyright terms: Public domain W3C validator