Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hba1w Structured version   Unicode version

Theorem hba1w 1722
 Description: Weak version of hba1 1804. See comments for ax6w 1732. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.)
Hypothesis
Ref Expression
hbn1w.1
Assertion
Ref Expression
hba1w
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem hba1w
StepHypRef Expression
1 hbn1w.1 . . . . . . 7
21cbvalvw 1715 . . . . . 6
32a1i 11 . . . . 5
43notbid 286 . . . 4
54spw 1706 . . 3
65con2i 114 . 2
74hbn1w 1721 . 2
81hbn1w 1721 . . . 4
98con1i 123 . . 3
109alimi 1568 . 2
116, 7, 103syl 19 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177  wal 1549 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551
 Copyright terms: Public domain W3C validator